Claims
- 1. A method of delivering fuel to an internal combustion engine that includes:
- a fuel supply with a fuel pump responsive to application of electrical power for supplying fuel under pressure,
- fuel delivery means on the engine,
- a fuel line having one end connected to an outlet of said pump and a second end connected to said fuel delivery means,
- a check valve in said fuel line for preventing reverse flow of fuel from said delivery means to said pump,
- fuel bypass means coupled to said fuel line between said second end of said fuel line and said check valve for providing a regulated fuel bypass flow path from said pump outlet parallel to said line, such that fuel continues to flow through said bypass means and said pump continues operation in the absence of fuel demand at said fuel delivery means, said method comprising the steps of:
- (1.) providing a flexible diaphragm valve made from a planar sheet of flexible fuel impervious material of uniform thickness and an associated rigid annular valve seat,
- (2.) arranging said diaphragm to be in continuous communication with the fuel delivery line,
- (3.) arranging said valve seat relative to the diaphragm valve to form an annular valve seat barrier to control communication between the fuel line and the bypass flow path by flow of fuel radially inwardly of and across said annular valve seat and between said diaphragm valve and valve seat,
- (4.) yieldably biasing said diaphragm to directly bear on said valve seat to sealably isolate the fuel line from the fuel bypass path,
- (5.) causing said diaphragm valve and valve seat to operate conjointly such that when force of fuel pressure in the fuel line overcomes the biasing force exerted on said diaphragm, said diaphragm is disengaged from said valve seat to open communication of the fuel line with the fuel bypass outlet path via said valve seat, and vice versa when the spring force overcomes such fluid pressure force.
- 2. A bypass pressure control unit for a fuel delivery system for an internal combustion engine having a fuel pump with its output connected to a fuel delivery line of the system comprising:
- a housing, a flexible diaphragm valve made from a planar sheet of flexible fuel impervious material of uniform thickness and defining with said housing a first chamber and a second chamber, said housing having at least one port defining a fuel inlet adapted for continuous communication between the fuel delivery line and said first chamber, a fuel bypass outlet port communicating with said second chamber, a rigid valve seat formed in said housing between said chamber, a spring in said housing for biasing said diaphragm to directly bear on said valve seat to sealably isolate said first chamber from the fuel bypass outlet port via said second chamber, and said diaphragm, spring and valve seat being constructed and arranged such that when force of fluid pressure in said first chamber overcomes the force exerted by said spring on said diaphragm, said diaphragm is disengaged from said valve seat to thereby open communication of said first chamber with the fuel bypass outlet port via said second chamber, and vice versa when the spring force overcomes such fluid pressure force; to thereby regulate the pressure of fuel in said fuel delivery line, and wherein said valve seat is in the form of an annulus defining with said diaphragm when sealably engaged thereon an annular valve seat barrier between said first and second chambers.
- 3. The pressure control unit of claim 1 wherein the fuel outlet port is formed in the housing.
- 4. The pressure control unit of claim 3 wherein the fuel outlet port includes restricted orifice means downstream of said valve seat constructed and arranged such that when said diaphragm is displaced from said valve seat said first chamber communicates with said restricted orifice means.
- 5. The pressure control unit of claim 2 comprising a rigid presser member associated with said diaphragm against which said spring bears to bias said diaphragm into direct engagement with said valve seat.
- 6. The pressure control unit of claim 5 wherein the fuel outlet port is formed in said diaphragm and said presser member.
- 7. The pressure control unit of claim 6 wherein said fuel outlet port is formed as an opening in said diaphragm and an opening in said presser member aligned with said diaphragm opening and sized to form a restricted orifice in said fuel outlet port, such that when said diaphragm is displaced from said valve seat said first chamber communicates with the diaphragm and presser member openings.
- 8. The pressure control unit of claim 7 wherein said housing has a spring chamber enclosing said spring and having an opening therein defining said fuel bypass outlet port that communicates with said first chamber when said diaphragm disengages from said valve seat.
- 9. The pressure control unit set forth in claim 2 wherein said valve seat barrier has a relatively large diameter annular seating surface generally coplanar with a valve-seat-engaging portion of said diaphragm when sealably seated on said seat annular surface, said seating surface and said diaphragm being constructed and arranged to create a relatively large variation in bypass fuel flow controlling cross-sectional area for a relatively small valve-opening and valve closing travel increment of said diaphragm valve-seat-engaging portion.
- 10. The pressure control unit of claim 9 wherein said spring comprises a coil spring arranged coaxially with said valve seat annulus.
- 11. The pressure control unit set forth in claim 2 wherein said pressure control unit housing comprises a base portion and a fuel line connector portion integral with one another and having passageways in said base portion and a fuel line passage in said connector portion, said passageways in said base portion defining said first chamber, said valve seat and said second chamber, said housing further including a cap affixed to said base portion and constructed and arranged therewith to define a spring chamber containing said spring and sealably clamping said diaphragm between said base portion and said cap.
- 12. The pressure control unit of claim 2 wherein said diaphragm includes a flexible convolution portion having one surface in constant communication with said first chamber and an opposed surface in constant communication with a reference pressure chamber in both the open and closed conditions of said diaphragm relative to said valve seat.
- 13. The pressure control unit of claim 12 wherein said housing includes a cap in which said spring is mounted for operable biasing engagement with said diaphragm, said cap and said diaphragm being mounted to said housing as a sealed unit to provide a sealed chamber enclosing said spring and forming said reference pressure chamber, said chamber being filled with a gaseous medium at a predetermined pressure to modulate the biasing force of said spring relative to said diaphragm.
- 14. The pressure control unit of claim 12 wherein the material of said diaphragm convolution portion is resiliently yieldable.
- 15. The pressure control unit of claim 13 wherein said diaphragm annular convolution portion extends in encircling relation to said spring and generally coaxial therewith, and is constructed and arranged to permit yieldable expansion and contraction of said first chamber in response to fuel pressure variations in said first chamber and to accommodate valve-opening and valve-closing travel of said diaphragm.
- 16. The pressure control unit of claim 2 including in combination therewith a vehicle fuel tank, a fuel pump canister mounted in said tank, a rotary fuel pump mounted in said canister, said pressure control unit being mounted on the outlet of said rotary fuel pump within the confines of the fuel pump canister and in bypass fuel communication with a reservoir in said fuel pump canister.
- 17. A fuel delivery system for an internal combustion engine that includes a fuel supply with a pump responsive to application of electrical power for delivering fuel under pressure, an engine air intake manifold, fuel delivery means coupled to said fuel supply for controlled delivery of fuel from said supply to said manifold, pressure regulator means having an inlet means responsive to fuel pressure at said fuel delivery means and outlet means connected through a fuel return to said supply, said regulator means being responsive to a predetermined pressure differential across said fuel delivery means for passing excess fuel through said return to said supply, characterized in that said regulator means comprises:
- a flexible diaphragm valve made from a planar sheet of flexible fuel impervious material of uniform thickness, and an associated rigid valve seat defining with said outlet means and said inlet means a first chamber and a second chamber respectively, spring means for biasing said diaphragm to directly bear on said valve seat to sealably isolate said first chamber from said bypass outlet means via said second chamber, and wherein said diaphragm, spring and valve seat are constructed and arranged such that when force of fuel pressure in said first chamber overcomes the force exerted by said spring on said diaphragm, said diaphragm is disengaged from said valve seat to open communication of said first chamber with the fuel bypass outlet means via said second chamber, and vice versa when the spring force overcomes such fuel pressure force, to thereby regulate the pressure of fuel in said fuel delivery means, and wherein said valve seat is in the form of an annulus defining with said diaphragm when sealably engaged thereon an annular valve seat barrier between said first and second chambers.
- 18. The system of claim 17 wherein the fuel outlet means includes restricted orifice means downstream of said valve seat constructed and arranged such that when said diaphragm is displaced from said valve seat said first chamber communicates with said restricted orifice means.
- 19. The system of claim 17 comprising a rigid presser member associated with said diaphragm against which said spring bears to bias said diaphragm into direct engagement with said valve seat.
- 20. The system of claim 19 wherein the fuel outlet means includes a port formed in said diaphragm and said presser member.
- 21. The system of claim 20 wherein said fuel outlet port is formed as an opening in said diaphragm and an opening in said presser member aligned with said diaphragm opening and sized to form a restricted orifice in said fuel outlet means constructed and arranged such that when said diaphragm is displaced from said valve seat said first chamber communicates with the diaphragm and presser member openings.
- 22. The system of claim 17 wherein said valve seat barrier has a relatively large diameter annular seating surface generally coplanar with a valve-seat-engaging portion of said diaphragm when sealably seated on said seat annular surface, said seating surface and diaphragm being constructed and arranged to create a relatively large variation in bypass fuel flow controlling cross-sectional area for a relatively small valve-opening and valve-closing travel increment of said diaphragm valve-seat-engaging portion.
- 23. The system of claim 22 wherein said spring comprises a coil spring arranged coaxially with said valve seat annulus.
- 24. The system of claim 17 wherein said diaphragm includes a flexible convolution portion having one surface in constant communication with said second chamber and an opposed surface in constant communication with a reference pressure chamber in both the open and closed conditions of said diaphragm relative to said valve seat.
- 25. The system of claim 24 wherein the material of said diaphragm convolution portion is resiliently yieldable.
- 26. The system of claim 25 wherein said diaphragm annular convolution portion extends in encircling relation to said spring and generally coaxial therewith, and is constructed and arranged to permit yieldable expansion and contraction of said second chamber in response to fuel pressure variations in said second chamber and to accommodate valve opening and closing travel of said diaphragm.
- 27. The system of claim 17 including in combination therewith a vehicle fuel tank, a fuel pump canister mounted in said tank, said pump comprising a rotary fuel pump mounted in said canister, said regulator means being mounted on the outlet of said rotary fuel pump within the confines of the fuel pump canister and in bypass fuel communication with a reservoir in said fuel pump canister.
REFERENCE TO COPENDING APPLICATIONS
This is a continuation-in-part of U.S. patent application Ser. No. 08/398,215 filed on Mar. 2, 1995, now U.S. Pat. No. 5,579,739 issued Dec. 3, 1996 which is a continuation-in-part of U.S. patent applications Ser. Nos. 08/181,848 filed on Jan. 14, 1994, now U.S. Pat. No. 5,458,104 issued Oct. 17, 1995 and 08/262,847 filed on Jun. 21, 1994, now U.S. Pat. No. 5,398,655.
US Referenced Citations (23)
Continuation in Parts (3)
|
Number |
Date |
Country |
Parent |
398215 |
Mar 1995 |
|
Parent |
181848 |
Jan 1994 |
|
Parent |
262847 |
Jun 1994 |
|