This application is a national phase of Patent Cooperation Treaty (PCT) International Application Serial No. PCT/US19/49320, filed on Sep. 3, 2019, the entire contents of which are hereby incorporated by reference.
The present invention generally relates to droplet generators and methods thereof and, more particularly, to droplet generators that grow droplets by supplying vapor driven by pressure.
People are exposed to varying levels of volatile organic compounds, airborne pollutants, virus and bacteria, liquid droplets, and organic/inorganic particulates. The condensation particle counter (CPC), often known as condensation nucleus counter (CNC) is an instrument used for the measurement of submicron particles suspended in air. This instrument may utilize a droplet generator to grow small size particles into larger size droplets by the condensation of vapor-phase molecules onto the particle surface so that the particles may be optically detected. Thus, the CPC must create a supersaturated gas stream to effectuate the formation of the larger droplets.
Accordingly, droplet generators and methods for effectively creating a supersaturated gas stream may be desired.
In one embodiment, a droplet generator includes a chamber including an enclosed space filled with gas having vapor; a tube extending through the chamber, a gas flow channel inside the tube, and a heater in the first chamber. The tube includes a sidewall having an outer surface exposed to the enclosed space of the chamber, and an inner surface. The tube contains liquid. The heater is operable to change a phase of the liquid contained in the tube to vapor such that the vapor is provided into the enclosed space. A vapor pressure in the first chamber is higher than a pressure in the gas flow channel such that the vapor in the first chamber flows to the gas flow channel by passing through the sidewall of the tube.
In another embodiment, a droplet generator includes a chamber including an enclosed space filled with gas having vapor, a plurality of tubes extending within the chamber, each of the plurality of tubes comprising a sidewall having an outer surface exposed to the enclosed space of the chamber, and an inner surface, a plurality of gas flow channels inside the plurality of tubes, and a plurality of heaters, each of the plurality of heaters operable to change a phase of the liquid contained in one of the plurality of tubes in the chamber to vapor such that the vapor is provided into the enclosed space. A pressure in the enclosed space of the chamber is higher than pressures in the plurality of gas channels such that the vapor in the enclosed space flows to the plurality of gas flow channels by passing through the sidewalls of the plurality of tubes.
In yet another embodiment, a method of for generating continuous droplets includes providing a tube within a chamber of a droplet generator, providing liquid to the tube of the droplet generator, heating, with a heater in the chamber, the tube in the chamber of the droplet generator to change a phase of liquid contained in the tube in the chamber to vapor such that the vapor is provided into an enclosed space of the chamber, flowing the vapor in the enclosed space to a gas flow channel inside the tube through a sidewall of the tube, and passing a particle-containing gas flow through the gas flow channel.
The embodiments set forth in the drawings are illustrative and exemplary in nature and not intended to limit the inventions defined by the claims. The following detailed description of the illustrative embodiments can be understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Reference will now be made in detail to aspects of various embodiment of the present disclosure, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout.
The embodiments described herein generally relate to condensation droplet generator devices and methods that may be used in conjunction with a condensation particle counter (CPC) or other devices that may require a particle, compound, biological agent and/or other small articles to be enlarged so that it may be detected and/or analyzed. More particularly, embodiments described herein are directed to droplet generators that grow droplets by supplying vapor driven by pressure. The droplet generator includes a first chamber, a second chamber containing liquid, a tube extending through the first chamber and the second chamber, and a heater. The tube includes a sidewall having an outer surface exposed to the first chamber and the second chamber, and an inner surface, a first opening at a side of the second chamber, a second opening at a side of the first chamber, and a gas flow channel inside the tube. The tube is configured to receive the liquid from the second chamber, and the heater is operable to change a phase of the liquid contained in the tube in the first chamber to vapor such that the vapor is provided into the first chamber. The pressure in the first chamber is higher than the pressure in the gas channel such that the vapor in the first chamber flows to the gas flow channel by passing through pores of the tube. The gas flow channel becomes super-saturated due to the flow of vapor from the first chamber.
The tube functions as a liquid flow channel that allows liquid from the second chamber to move toward the side of first chamber. That is, the tube serves as a medium for supplying liquid to the first chamber. In addition, the tube also provides vapor into the first chamber when heated by the heater. Furthermore, the tube includes a plurality of pores that allow the vapor in the first chamber to pass through the pores and flow into the gas flow channel via diffusion and vapor pressure difference between the first chamber and the gas flow channel.
The droplet generators and methods for generating droplet using the droplet generators will be described in more detail herein.
As illustrated in
The tube 130 has various functions. First, the tube 130 functions as a liquid flow channel that allows liquid from an external liquid supplier to move in −x direction via. the sidewall 136 by capillary action. Second, the tube 130 provides vapor into the chamber 110 when heated by the heater 150. For example, the liquid in the tube vaporize into the chamber 110 when heated by the heater 150. Third, the tube 130 includes a plurality of pores that allow the vapor in the first chamber 110 to pass through the pores and flow into the gas flow channel 142. For example, the tube 130 may be made of hydrophilic polymer having a pore structure, which will be described in detail with reference to
As described in more detail below, the liquid in the sidewall 136 at the chamber 110 may be phase-changed into vapor by the heater 150. The liquid may be water, any organic compound in which a hydroxyl group is bound to a carbon atom of an alkyl or substituted alkyl group including but not limited to isopropyl alcohol, butyl alcohol, methyl alcohol, ethyl alcohol, or any combination of water and such organic compounds. The heater 150 may be installed at any location in the chamber 110. For example, the heater 150 may be installed at the outer surface 132 of the tube 130. As another example, the heater 150 may be installed over the outer surface 132 of the tube 130. The vapor flows into the enclosed space 112 of the chamber 110. The vapor in the chamber 110 is then delivered toward the gas flow channel 142 via the pores of the tube 130.
When the outer surface of the tube 130 is heated by the heater 150 (not shown in
When the vapor pressure (Pvapor) in the enclosed, space 112 is smaller than the capillary pressure (Pcapillary) in the tube 130, the vapor in the enclosed space 112 may be blocked by the liquid in the tube 130 and may not pass through the tube 130. Specifically, by referring to
where Pcapillary is the capillary pressure, σ is the surface tension of liquid 122, θ is the contact angle between liquid and pore structure, and d is the pore size. The vapor pressure (Pvapor) in the enclosed space 112 continues to increase as vapor is continuously introduced to the enclosed space 112 by the heater 150.
When the vapor pressure (Pvapor) reaches a certain level that is higher than the capillary pressure (Pcapillary), the vapor pressure starts making one or more paths through the pore structure of the sidewall of the tube 130. By referring to
The flow of vapor from the chamber 110 into the gas flow channel 142 increases the humidity within the gas flow channel 142 and makes the gas flow channel 142 in a super-saturated condition, thereby causing growth of the particles by condensation. For example, as shown in
Referring to
By growing the volume (i.e., mass) of droplets (e.g., 146-1, 146-2, 146-3), the inertia of droplets also increases rapidly in proportion to volume increase. For example, the droplet generator 100 grows a particle (e.g., a 10-nm particle) to a 3-micron water droplet in less than 0.3 seconds. The original inertia of the particle increases 2.7 million times in 0.3 seconds during passage through the droplet generator 100.
Referring now to
The second chamber 120 is configured to maintain liquid 122, which may be water, any organic compound in which a hydroxyl group is bound to a carbon atom of an alkyl or substituted alkyl group including but not limited to isopropyl alcohol, butyl alcohol, methyl alcohol, ethyl alcohol, or any combination of water and such organic compounds. The liquid 122 may be absorbed by the tube 130 in the second chamber 120 and the absorbed liquid may move in −x direction by capillary force (i.e., move toward the first chamber 110). The heater 150 in the first chamber 110 changes a phase of the liquid contained in the tube 130 to vapor such that the vapor is provided into the first chamber 110.
As illustrated in
As described above with reference to
As illustrated in
The tube 130 has various functions. First, the tube 130 provides a separation between the liquid 122 maintained within the second chamber 120 and a gas flow channel 142. Second, the tube 130 functions as a liquid flow channel that allows liquid from the second chamber 120 to move toward the side of first chamber 110 via the sidewall 136 by capillary action. For example, the liquid 122 in the second chamber 120 is absorbed by the second portion 130-2 of the tube 130, and the absorbed liquid flows to the first portion 130-1 of the tube 130. Third, the tube 130 provides vapor into the first chamber 110 when heated by the heater 150. For example, the liquid in the first portion 130-1 of the tube vaporize into the first chamber 110 when heated by the heater 150. Fourth, the tube 130 includes a plurality of pores that allow the vapor in the first chamber 110 to pass through the pores and flow into the gas flow channel 142 via diffusion and vapor pressure difference between the first chamber 110 and the gas flow channel 142.
As described in above with reference to
Referring to
By growing the volume (i.e., mass) of droplets (e.g., 146-1, 146-2, 146-3), the inertia of droplets also increases rapidly in proportion to volume increase. For example, the droplet generator 100 grows a particle (e.g., a 10-nm particle) to a 3-micron water droplet in less than 0.3 seconds. The original inertia of the particle increases 2.7 million times in 0.3 seconds during passage through the droplet generator 100.
While the droplets grow and gain weight as they move through the gas flow channel 142, the droplets may also collect volatile organic compounds (VOCs) and/or gaseous chemical. The droplets serve as media to collect VOCs and/or chemical gas. VOCs and/or gaseous chemical near the surface of the water droplet (e.g., 146-1, 146-2, 146-3) spontaneously move to the surface by diffusion from a region of higher chemical concentration (e.g., a region outside the water droplets) to a region of lower concentration of the surface of water droplets. While the droplets grow, vapor generated from the first chamber 110 continuously condenses on the surface of droplets. Newly condensed vapor makes the concentration of droplet lower. Thus, the droplets continuously collect the VOC and gaseous chemical without saturation. The VOC and/or gaseous chemical diffusion to water droplet can be explained by Fick's law below.
where JVOC is diffusive VOC (and/or gaseous chemical) transfer rate (kmol/second), Area is surface area (m2) of water droplet, Ctotal is total concentration (kmol/m3), DVOC is the diffusivity of VOC (and/or gaseous chemical) in the mixture (m2/second), and
is the concentration ratio between VOC (and/or gaseous chemical) and mixture. The second opening 131 can be connected with an external sensing device (not shown) for analyzing generated droplets (e.g., a particulate filter, a particle collector, a particle counter, a particle analyzer, a chemical analyzer, a bio-marker analyzer, or a bio-species analyzer). The external sensing device may be in communication with an additional system or subsystem by wireless or wired communication. For example, the external sensing device may be communicably coupled to a remote computer by a wireless network such as a cellular network, a satellite communications network, a WiFi network and the like. Although not illustrated in the figures, embodiments described herein may also include a saturator/pre-conditioner section prior to the tube 130 by which the particle-containing gas flow 140 may be conditioned to a specified temperature and saturation ratio before entering the tube 130. For example, the temperature of the particle-containing gas flow 140 may be lowered by a cooling element prior to entering the first opening 133 of the tube 130.
In the embodiment illustrated in
The heater 150 may surround a portion of the outer surface 132 of the tube 130 in the first chamber 110. For example, the heater 150 may be a wire made of a heating element material that is wrapped around the outer surface 132 of the first portion 130-1. The heater 150 provides thermal energy for phase changing liquid contained in the tube 130 and produces a temperature gradient that is perpendicular to the direction of the particle-containing gas flow 140. For example,
Although
In some embodiments, the length of the heater 150 may be adjusted such that it provides heat to the entire length or a portion of the outer surface 132 of the tube 130 or the first housing 111 to provide optimal operating conditions. For example, as illustrated in
As another example, as illustrated in
By still referring to
The inner wall 130B may be constructed from one or more hydrophobic layers that comprise nano- or microsize pore structures having a plurality of pores. The inner wall 130B which includes one or more hydrophobic layers prevents liquid from entering the gas flow channel 142 and disrupting the particle-containing gas flow 140. In wetting wall devices, liquid may enter the tube due to external forces such as shock or may only operate effectively in a vertical orientation. The inner wall 130B may include a plurality of pores that allow the vapor in the first chamber 110 to pass through the pores and flow into the gas flow channel 142 via diffusion and/or vapor pressure difference between the first chamber 110 and the gas flow channel 142. While the liquid in the outer wall is prevented from passing through the inner wall 130B because the inner wall 130B is a hydrophobic layer, the vapor in the first chamber 110 may pass through the plurality of pores of the inner wall 130B based on diffusion and/or vapor pressure difference between the first chamber 110 and the gas flow channel 142.
where, pν is partial pressure of vapor, psat(T) is saturation pressure of vapor at temperature T . For water, the saturation ratio may be further defined by the ratio of the actual specific humidity to the specific humidity of saturated at the same temperature. If the resulting value is less than one, the condition is considered unsaturated. If the resulting value is equal to one, the condition is saturated. If the resulting value is greater than one, the condition is considered supersaturated. Supersaturation means that vapor exceedingly exists at a given temperature. Exposure of particles to supersaturated vapor results in vapor deposition in the form of absorption coupled with vapor condensation causing the droplets to grow about the particles.
The efficacy of the continuous droplet generator to nucleate particles depends upon the flow field and the thermal and mass transport inside evaporation-condensation tube. The rate of growth of droplets induced by a particle when the initial particle size is less than the mean gas free path is governed by the rate of random molecular collision of vapor molecules. The rate of collisions may be given by the kinetic theory of gases:
where M is molecular weight of liquid, m is mass of a vapor molecule, λ is particle-containing gas mean free path, ρp is density of particle, t is time, k is gas constant per molecule, and Na is Avogadro's constant.
For particles larger than the gas mean free path, growth does not depend on the rate of random molecular collisions but rather on the rate of diffusion of molecules to the droplet surface. This is analogous to the coagulation of aerosol particles:
By referring to
The droplet generator 700 is the same as the droplet generator 100 shown in
As the particle-containing gas flow 140 traverses the gas flow channel 142 in +x direction, condensed droplets are formed upon the particles, for example, droplets 722-1, 722-2, and 722-3 which then exit the gas flow channel 142 at the first opening 133 on a continuous basis. As opposed to the super-saturation area 310 in
The illustrated embodiment generally comprises a first chamber 810, a second chamber 820, a plurality of tubes 830, and a plurality of heaters 850. As shown in
The second chamber 820 is configured to maintain liquid 822, which may be water, any organic compound in which a hydroxyl group is bound to a carbon atom of an alkyl or substituted alkyl group including but not limited to isopropyl alcohol, butyl alcohol, methyl alcohol, ethyl alcohol, or any combination of water and such organic compounds. The liquid 822 may be absorbed by the plurality of tubes 830 in the second chamber 820 and the absorbed liquid may move in −x direction (i.e., toward the first chamber 810). Each of the plurality of heaters 850 in the first chamber 810 changes a phase of the liquid contained in each of the plurality of tubes 830 to vapor such that the vapor is provided into the first chamber 810.
The first chamber 810 includes an enclosed space 812. The enclosed space 812 is hounded by the first housing 811 and the plurality of the tubes 830. Specifically, the enclosed space 812 is bounded by the first housing 811 and the outer surfaces of the plurality of tubes 830. That is, the first chamber 810 is a cylindrical chamber and the plurality of tubes 830 pass through the first chamber 810. The second chamber 820 is bounded by the second housing 821 and the plurality of tubes 830. Specifically, the second chamber 820 is bounded by the second housing 821 and the outer surfaces of the plurality tubes 830. That is, the second chamber 820 is a cylindrical chamber and the plurality of tubes 830 pass through the second chamber 820.
The first chamber 810 and the second chamber 820 are separated from each other such that the liquid 822 in the second chamber 820 does not flow into the first chamber 810 except via the plurality of tubes 830. The second housing 821 may include a liquid inlet (not shown) to fill the second chamber 820 with the liquid 822.
Each of the tubes 830 may have the similar structure as the tube 130 described above. For example, each of the tubes 830 includes a sidewall having an outer surface and an inner surface. The sidewall may be of any suitable geometry, such as cylindrical or rectangular, for example, and may have a thickness between about 0.5 micrometers and 5 centimeters. Each of the tubes 830 has various functions. First, the tube 830 provides a separation between the liquid 822 maintained within the second chamber 820 and a gas flow channel inside each of the plurality of tubes 830. Second, the tube 830 functions as a liquid channel that allows liquid from the second chamber 820 to move toward the side of the first chamber 810 via the side wall of the tube 830 by capillary action. Third, the tube 830 provides vapor into the enclosed space 812 of the first chamber 810 when heated by the heater 850. Fourth, the tube 830 includes a plurality of pores that allow the vapor in the enclose space 812 of the first chamber 810 to pass through the pores and flow into the gas flow channel within each of the tubes 830 via diffusion and/or vapor pressure difference between the first chamber 810 and the gas flow channel.
It should now be understood that embodiments of the present disclosure may provide droplet generator devices that effectively create supersaturated areas based on vapor pressure difference. The droplet generator device includes a first chamber, a second chamber containing liquid, a tube extending through the first chamber and the second chamber, and a heater. The tube includes a sidewall having an outer surface exposed to the first chamber and the second chamber, and an inner surface, a first opening at a side of the second chamber, a second opening at a side of the first chamber, and a gas flow channel inside the tube. The tube is configured to receive the liquid from the second chamber, and the heater is operable to change a phase of the liquid contained in the tube in the first chamber to vapor such that the vapor is provided into the first chamber. The pressure in the first chamber is higher than the pressure in the gas channel. The vapor in the first chamber 110 is then delivered toward the gas flow channel 142 via one or more paths through the pore structure of the sidewall of the tube 130. The one or more paths are generated as described above with reference to
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/049320 | 9/3/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/045724 | 3/11/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20100180765 | Son et al. | Jul 2010 | A1 |
20140033915 | Hering et al. | Feb 2014 | A1 |
20140134623 | Hiddessen et al. | May 2014 | A1 |
20170157583 | Kulkarni et al. | Jun 2017 | A1 |
20180290154 | Baxter | Oct 2018 | A1 |
20190015771 | Son | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
1655829 | Aug 2005 | CN |
03082355 | Oct 2003 | WO |
Entry |
---|
International Search Report of PCT/US2019/049320 dated Nov. 27, 2019. |
Extended European Search Report dated Aug. 30, 2022 pertaining to EP application No. 19944386.2 filed Mar. 22, 2022, pp. 1-9. |
CN First Office Action dated Oct. 10, 2023 pertaining to CN application No. 201980101231.2 filed Apr. 11, 2022, pp. 1-7. |
Number | Date | Country | |
---|---|---|---|
20210245177 A1 | Aug 2021 | US |