This application is a National Stage of International Application No. PCT/FI2013/050810 filed Aug. 16, 2013, claiming priority based on Finnish Patent Application No. U20124166, filed Aug. 20, 2012, the contents of all of which are incorporated herein by reference in their entirety.
The present invention relates to a pressure-increasing unit as claimed in the preamble of claim 1. Such a device is utilized in a pressurized gas system in particular, such a system comprising at least one compressor. The system further includes a suction pipe connected to the compressor for gas input, and an output pipe for gas pressurized by the compressor. The output pipe is connected to a distribution pipeline through which gas is distributed to objects of use, such as blow couplings and actuator couplings, provided in an operating space.
In previously known systems, the gas used therein always has to be dried and otherwise purified prior to allowing the gas to enter the distribution pipeline in order to enable possible malfunctions in the objects of use to be avoided. Moisture removal, for instance, causes relatively high costs, which are further increased by the fact that in an ordinary system the pressurized gas is allowed to be discharged into the space surrounding the object of use. Consequently, all pressurized gas used in the system always has to be dried, and it has to be pressurized to the pressure level of the system from normal atmospheric pressure.
An object of the invention is thus to provide an apparatus enabling the aforementioned problems relating to pre-treatment of pressurized gas to be mainly solved. This object is achieved such that the pressure-increasing unit is, according to the present invention, provided with the characteristic features defined in the claims. More specifically, the device according to the invention is mainly characterized by what is disclosed in the characterizing part of claim 1.
Preferred embodiments of the invention are disclosed in the dependent claims.
The invention is based on the idea that gas with reduced pressure in the object of use is recovered for recycling. For this purpose, a particular pressure-increasing unit operating in the immediate vicinity of the object of use is connected to the pressurized gas system for treating recovered gas.
The invention provides considerable advantages. Thus the device, which also as auxiliary equipment is readily installable in a system using pressurized gas, such as pressurized air, may be used separately from the actual pressurization main unit in order to increase the pressure of the gas locally. This enables the laborious and resource-demanding purification and drying required by continuous new gas to be pressurized to be avoided. The device thus enables gas pressurization costs to be reduced significantly.
By using the arrangement according to the invention to be provided in connection with the object of use or in the vicinity thereof, solutions can be avoided wherein pressurized gas to be possibly recovered is conveyed, by using parallel and expensive pipelines, to the primary compressor of the system for re-pressurization.
When made sufficiently compact, the arrangement is easy to take directly to the object of use and connect it therein to the pressure line of gas-utilizing applications.
Other advantages of the invention are presented in the following in connection with a more detailed description of special embodiments of the invention.
In the following, some preferred embodiments of the invention will be explained in closer detail with reference to the accompanying drawing, in which
The present figures do not show the pressure-increasing unit in scale but the figures are schematic, illustrating the structure and operation of the preferred embodiment in principle. The most essential structural parts of the solution indicated by reference numerals in the attached figures then correspond to the structural parts marked with reference numerals in this specification.
A pressure-increasing unit 1 according to
Reduced-pressure gas that passes through devices using pressurized gas, such as pressurized air, is recovered in manners known per se and directed to a second pipeline 5 along which it is conveyed to second receiving means 6. These second receiving means 6 for receiving reduced-pressure gas preferably comprise a non-return valve arranged in the second pipeline, such as a check valve known per se.
Recycling the reduced-pressure gas for reuse requires that the pressure of the gas be increased, which in the present pressure-increasing unit is solved by conveying the gas to at least one pressure intensifier 7 connected to a check valve. By utilizing energy contained in a gas flow, gas having a pressure higher than therebefore is produced in the gas intensifier, and the gas is led to a substitution means 8 which is connected to the pressure intensifier and which may be a change valve, e.g. a shuttle valve, placed between the pipeline 4 conveying pressurized gas and the first pipeline 3 further transferring the pressurized gas to the applications utilizing it. In its preferred embodiment, the substitution means forms simultaneously the first receiving means 2. When the pressure of the gas pressurized by the pressure intensifier is higher than the pressure of the gas coming from the main source along the pipeline 4, re-pressurized gas moves through the substitution means along the first pipeline to the applications while the substitution means simultaneously cuts off the flow coming from the main source.
The first pipeline 3 may also be provided with a pressure controller 9 which, when necessary, adjusts the pressure of the re-pressurized gas to be the same as the pressure of the gas coming from the main source.
By providing the pressure-increasing unit 1 with a first storage tank 10, it is possible to store the reduced-pressure gas coming from the applications in order to produce amounts of gas sufficient for the treatment. Such a first storage tank is for this purpose arranged in a third pipeline 11 interconnecting the receiving means 6 receiving the reduced-pressure gas and the first pressure intensifier.
The pressure-increasing unit may also be provided with a second storage tank 12 arranged in a fourth pipeline 13 interconnecting one or more pressure intensifiers 7 and the substitution means 8. Such a storage tank may be utilized either together with the aforementioned first storage tank or irrespective thereof. By conveying from the pressure intensifier the re-pressurized gas to the second storage tank, it is possible to store the gas therein until its pressure is higher than the pressure of the gas coming from the main source, after which it may be directed to the substitution means and further to the applications.
In another embodiment, the pressure-increasing unit 1 comprises a return line 14 arranged in the pressure intensifier 7 for conveying the pressurized gas that released energy in the pressure intensifier back to the first storage tank 10. Such an embodiment is shown in
A variation of this embodiment is shown in the embodiment according to
It will be apparent to a person skilled in the art that as technology advances, the basic idea of the invention may be implemented in many different ways. The invention and its embodiments are thus not restricted to the examples described above but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20124166 U | Aug 2012 | FI | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2013/050810 | 8/16/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/029912 | 2/27/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3846049 | Douglas | Nov 1974 | A |
3951199 | Pereira | Apr 1976 | A |
4483142 | Tsunekawa | Nov 1984 | A |
4612769 | Berntell | Sep 1986 | A |
4655036 | Hindes | Apr 1987 | A |
20040123909 | Parkkinen | Jul 2004 | A1 |
20100205960 | McBride | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
102004001917 | Feb 2005 | DE |
2196338 | Jun 2010 | EP |
1383860 | Feb 1975 | GB |
2469852 | Nov 2010 | GB |
02068858 | Sep 2002 | WO |
Entry |
---|
International Search Report dated Oct. 16, 2013 from the International Bureau in counterpart International Application No. PCT/FI2013/050810. |
Communication dated Jun. 9, 2016, from the European Patent Office in counterpart European application No. 13830803.6. |
Number | Date | Country | |
---|---|---|---|
20150219103 A1 | Aug 2015 | US |