Field of the Invention
This invention relates to an accessory device for a quench valve of a cryostat, in particular for use in a magnetic resonance imaging (MRI) system. Furthermore, this invention relates to a method of enabling a cryostat containing a cryogen to be safely transported by air transportation.
Description of the Prior Art
Superconducting magnet systems are used for medical diagnosis, for example in magnetic resonance imaging systems. A requirement of an MRI magnet is that it produces a stable, homogeneous, magnetic field. In order to achieve the required stability, it is common to use a superconducting magnet system which operates at very low temperature. The temperature is typically maintained by cooling the superconductor by immersion in a low temperature cryogenic fluid, also known as a cryogen, such as liquid helium.
The superconducting magnet system typically comprises a set of superconductor windings for producing a magnetic field, the windings being immersed in a cryogenic fluid to keep the windings at a superconducting temperature, the superconductor windings and the cryogen being contained within a cryogen vessel.
Superconducting magnets are susceptible to quench events, in which, for one of a number of reasons, part of the superconducting magnet ceases to be superconducting. The resulting resistance in part of the magnet causes heat due to the current flowing through it. This rapidly causes further parts of the superconducting magnet to cease superconducting. The result is that all of the energy which was stored in the magnetic field of the magnet is suddenly released as heat. In a superconducting magnet cooled by a liquid cryogen, this typically results in rapid boil-off of a large volume of the cryogen, with gaseous and liquid cryogen being expelled from the cryostat at high speed. During a quench, it is essential that the escaping cryogen gas is allowed to exit the cryostat in a safe manner. The exit point typically opens by responding to an increase in the pressure within the cryostat. It is known to provide a quench valve to control the exit point. The quench valve is closed until a certain pressure is reached within the cryostat. Once the cryostat pressure reaches the certain value, the quench valve is opened by the pressure acting upon it.
During transportation of an already assembled system, filled with cryogen, no cooling can be provided to the cryogen, which leads to a heat input into the cryostat, leading to a boil-off of cryogen. Therefore, during air transportation, relief devices must be available in order to guarantee a pressure-relief to protect against overpressure. In other words, a significant build-up of pressure within the cryostat shall be prevented.
However, the change of atmospheric pressure during an air shipment, even in a pressurized compartment, can cause a problem with the relief devices employed. Ordinary relief valves can freeze and plug up following rapid ejection of cold gas following altitude changes. For this reason, for air transportation, each magnet system has to be fitted with an absolute pressure relief valve, which is unaffected by atmospheric pressure. In addition, in order to comply with safety regulations, an independent second device has to be present, which second device can be a gauge device.
It is permissible to use the existing quench valve as the gauge device. However, the differential pressure required to crack the quench valve is less than the differential between the pressure within the magnet system and the pressure within the hold of the air craft during air transportation. Therefore, the quench valve would lift and vent excessive cryogen gas. In order to overcome this, it is known to blank off the outlet of the quench valve by an air tight plate fitted with e.g. a 13 PSIG valve. Additionally, a hand valve is fitted, which may also be used to relief pressure before removing the plate. The whole assembly needs to be leak tight and fully tested, making this an expensive solution. Furthermore, the assembly is discarded after arrival on operational site.
It is therefore an object of the present invention to provide a simple and reliable technique to ensure a safe air transportation of a cryostat containing a cryogen.
A core idea of the invention is to enable the existing quench valve of the cryostat to serve as a pressure-relief device during air transportation of the cryostat, in a way that the quench valve remains fully operable. In other words, the operating ability of the quench valve is not restricted. Merely the cracking pressure of the quench valve is temporarily raised for the purpose of air transportation. By this means, a safe air transportation of a cryostat containing a cryogen is achieved in a simple, reliable and very effective way, thereby following safety regulations.
Instead of removing parts of the existing quench valve, and installing an additional hand valve in case of air transportation, as is conventional in the prior art, the invention raises the valve cracking pressure in order to improve the capability of the existing quench valve. The cracking pressure of the quench valve is raised such that the expected differential pressure between the inside of the cryostat and the air craft hold is less than the raised cracking pressure. No additional valve is required. The accessory device, which is used for raising the cracking pressure of the quench valve, may be used several times.
A cross-section of a superconducting magnet system for use in an MRI system is illustrated in
As illustrated in
Quench valve 8 includes a valve plate 9 which is held against valve seat 10 by a first spring arrangement 11. In case of overpressure within cryogen vessel 2, a corresponding pressure of cryogen gas acting on the inner side 12 of the valve plate 9 will exceed the pressure acting on the outer side 13 of the valve plate 9 sufficiently to overcome the force of the first spring arrangement 11 and open the quench valve 8. Cryogen gas will escape, maintaining the pressure within the cryogen vessel 2 at an acceptable level. Once the pressure in the cryogen vessel 2 drops below the pressure needed to keep the quench valve 8 open, first spring arrangement 11 will press the valve plate 9 back into contact with valve seat 10. Part of the valve plate 9 may be formed by a burst disc, not visible in
An embodiment of the invention is depicted in
The accessory device 14 comprises a main body 15 forming a cylindrical or box-shaped container 16 with walls 17, with an open front 18 and a back plate 19. The main body 15 is provided with a number of small vent holes, which serve as openings to allow cryogen gas originating from the quench valve 8 to escape from the container 16 in case of a quench. An exemplary position of the vent holes is indicated in
The back plate 19 is arranged parallel to the valve plate 9 of the quench valve 8, when the accessory devices 14 is mounted. A second spring arrangement 24 comprising four spring-loaded plungers 25 is provided within the container 16. In
By means of the accessory device 14, using the second spring arrangement 24, the cracking pressure of quench valve 8 may be raised for example from 6 to 13 PSIG. In case of overpressure during air shipment, the pressure of cryogen gas acting on the inner side 12 of the valve plate 9 has to overcome the force of the second spring arrangement 24 in order to open the quench valve 8. In this event, cryogen gas exits the cryogen vessel 2 and enters the container 16, from which the gas escapes through the number of small vent holes.
When mounted, the main body 15 of the accessory device 14 is adapted to serve as a protective enclosure both for the first and second spring arrangement 11, 24, as well as for the surroundings of the cryogen vessel 2 in case of a rupture of a burst disc.
On arrival in the hospital or any other operational site, the accessory device 14 is removed, bringing the quench valve 8 back into its normal operation mode.
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the Applicant to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of the Applicant's contribution to the art.
Number | Date | Country | Kind |
---|---|---|---|
1406040.4 | Apr 2014 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/054537 | 3/4/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/150009 | 10/8/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4020860 | Fournier | May 1977 | A |
5094084 | Mraz | Mar 1992 | A |
5135024 | LeBlanc | Aug 1992 | A |
5158204 | Martrich et al. | Oct 1992 | A |
5861126 | Bajolet | Jan 1999 | A |
5892424 | Yamamoto et al. | Apr 1999 | A |
6305412 | Steele | Oct 2001 | B1 |
20090145883 | Gentsch | Jun 2009 | A1 |
20100102818 | Husband et al. | Apr 2010 | A1 |
20110036101 | Tigwell et al. | Feb 2011 | A1 |
20120174994 | Sorensen | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
87217202 | Dec 1988 | CN |
203214985 | Sep 2013 | CN |
103557359 | Feb 2014 | CN |
19650752 | Mar 1998 | DE |
19827667 | Dec 1999 | DE |
2117494 | Oct 1983 | GB |
2468491 | Sep 2010 | GB |
2468491 | Sep 2010 | GB |
20110072610 | Jun 2011 | KR |
400180 | Feb 2014 | PL |
Number | Date | Country | |
---|---|---|---|
20170023142 A1 | Jan 2017 | US |