1. Field of the Invention
This invention relates to cryosurgery and more particularly to cryoablation catheters comprising a fluid operating near its critical point.
2. Description of the Related Art
Cryoablation is a surgical technique for ablating tissue by cooling or freezing the tissue to a lethal degree. Cryoablation has the benefit of minimizing permanent collateral tissue damage and has applicability to a wide range of therapies including the treatment of cancer and heart disease.
A shortcoming with certain cryosurgical systems, however, arises from the process of evaporation. The process of evaporation of a liquefied gas results in enormous expansion as the liquid converts to a gas; the volume expansion is on the order of a factor of 200. In a small-diameter system, this degree of expansion consistently results in a phenomenon known in the art as “vapor lock.” The phenomenon is exemplified by the flow of a cryogen in a thin-diameter tube. The formation of a relatively massive volume of expanding gas impedes the forward flow of the liquid cryogen through the tubes.
Traditional techniques that have been used to avoid vapor lock have included restrictions on the diameter of the tube, requiring that it be sufficiently large to accommodate the evaporative effects that lead to vapor lock. Other complex cryo-apparatus and tubing configurations have been used to “vent” N2 gas as it is formed along transport tubing. These designs also contributed to limiting the cost efficacy and tube diameter.
There is accordingly a need for improved methods and systems for providing minimally invasive, safe and efficient cryogenic cooling of tissues.
An endovascular near critical fluid based cryoablation system for creating a lesion in tissue comprises a near critical fluid pressure source or generator; a near critical fluid cooler for cooling the near critical fluid; a near critical fluid based cryoablation catheter in fluid communication with the generator; and a controller operable to control the cooling power delivered from a distal treatment section of the catheter to the tissue to cool the tissue. The controller adjusts the pressure from a relatively high (for example, near critical) pressure to a substantially lower pressure based on a condition during the catheter activation.
In embodiments, the pressure is modulated based on the temperature of the catheter. When the temperature of the catheter reaches a target temperature, the pressure is reduced.
The description, objects and advantages of the present invention will become apparent from the detailed description to follow, together with the accompanying drawings.
Before the present invention is described in detail, it is to be understood that this invention is not limited to particular variations set forth herein as various changes or modifications may be made to the invention described and equivalents may be substituted without departing from the spirit and scope of the invention. As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.
Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events. Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.
All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail).
Embodiments of the invention make use of thermodynamic processes using cryogens that provide cooling without encountering the phenomenon of vapor lock.
Cryogen Phase Diagram and near Critical Point
This application uses phase diagrams to illustrate and compare various thermodynamic processes. An example phase diagram is shown in
When a fluid has both liquid and gas phases present during a gradual increase in pressure, the system moves up along the liquid-gas phase line 102. In the case of N2, the liquid at low pressures is up to two hundred times more dense than the gas phase. A continual increase in pressure causes the density of the liquid to decrease and the density of the gas phase to increase, until they are equal only at the critical point 104. The distinction between liquid and gas disappears at the critical point 104. The blockage of forward flow by gas expanding ahead of the liquid cryogen is thus avoided by conditions surrounding the critical point, defined herein as “near-critical conditions.” Factors that allow greater departure from the critical point while maintaining a functional flow include greater speed of cryogen flow, larger diameter of the flow lumen and lower heat load upon the thermal exchanger, or cryo treatment region tip.
As the critical point is approached from below, the vapor phase density increases and the liquid phase density decreases until right at the critical point, where the densities of these two phases are exactly equal. Above the critical point, the distinction of liquid and vapor phases vanishes, leaving only a single, supercritical phase. All gases obey quite well the following van der Waals equation of state:
(p+3/v2)(3v−1)=8t [Eq. 1]
where p=P/Pc, v=V/Vc, and t=T/Tc, and Pc, Vc, and Tc are the critical pressure, critical molar volume, and the critical temperature respectively.
The variables v, p, and t are often referred to as the “reduced molar volume,” the “reduced pressure,” and the “reduced temperature,” respectively. Hence, any two substances with the same values of p, v, and t are in the same thermodynamic state of fluid near its critical point. Eq. 1 is thus referred to as embodying the “Law of Corresponding States.” This is described more fully in H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Science Publications, 1971), the entire disclosure of which is incorporated herein by reference for all purposes.
In embodiments of the invention, the reduced pressure p is fixed at a constant value of approximately one, and hence at a fixed physical pressure near the critical pressure, while the reduced temperature t varies with the heat load applied to the device. If the reduced pressure p is a constant set by the engineering of the system, then the reduced molar volume v is an exact function of the reduced temperature t.
In other embodiments of the invention, the operating pressure p may be adjusted so that over the course of variations in the temperature t of the device, v is maintained below some maximum value at which the vapor lock condition will result. It is generally desirable to maintain p at the lowest value at which this is true since boosting the pressure to achieve higher values of p may involve use of a more complex and more expensive compressor, resulting in more expensive procurement and maintenance of the entire apparatus support system and lower overall cooling efficiency.
The conditions that need to be placed on v depend in a complex and non-analytic way on the volume flow rate dV/dt, the heat capacity of the liquid and vapor phases, and the transport properties such as the thermal conductivity, viscosity, etc., in both the liquid and the vapor. This exact relationship is not derived here in closed form algebraically, but may be determined numerically by integrating the model equations that describe mass and heat transport within the device. Conceptually, vapor lock occurs when the rate of heating of the needle (or other device structure for transporting the cryogen and cooling the tissue) produces the vapor phase. The cooling power of this vapor phase, which is proportional to the flow rate of the vapor times its heat capacity divided by its molar volume, is not able to keep up with the rate of heating to the needle. When this occurs, more and more of the vapor phase is formed in order to absorb the excess heat through the conversion of the liquid phase to vapor in the cryogen flow. This creates a runaway condition where the liquid converts into vapor phase to fill the needle, and effectively all cryogen flow stops due to the large pressure that results in this vapor phase as the heat flow into the needle increases its temperature and pressure rapidly. This condition is called “vapor lock.”
In accordance with one embodiment of the present invention, the liquid and vapor phases are substantially identical in their molar volume. The cooling power is at the critical point, and the cooling system avoids vapor lock. Additionally, at conditions slightly below the critical point, the apparatus may avoid vapor lock as well.
Cryoablation Systems
For purposes of illustration, both
In
A cryogenic generator 246 is used to supply the cryogen at a pressure that exceeds the critical-point pressure Pc for the cryogen at its outlet, referenced in
As used herein, the term “near critical” is meant to refer to near the liquid-vapor critical point. Use of this term is equivalent to “near a critical point” and it is the region where the liquid-vapor system is adequately close to the critical point, where the dynamic viscosity of the fluid is close to that of a normal gas and much less than that of the liquid; yet, at the same time its density is close to that of a normal liquid state. The thermal capacity of the near critical fluid is even greater than that of its liquid phase. The combination of gas-like viscosity, liquid-like density and very large thermal capacity makes it a very efficient cooling agent. Reference to a near critical point refers to the region where the liquid-vapor system is adequately close to the critical point so that the fluctuations of the liquid and vapor phases are large enough to create a large enhancement of the heat capacity over its background value. The near critical temperature is a temperature within ±10% of the critical point temperature. The near critical pressure is between 0.8 and 1.2 times the critical point pressure.
Referring again to
The cryogen is then provided to a device for use in cryogenic applications. In the exemplary embodiment shown in
Indeed, the form of the medical device may vary widely and include without limitation: instruments, appliances, catheters, devices, tools, apparatus', and probes regardless of whether such probe is short and rigid, or long and flexible, and regardless of whether it is intended for open, minimal, non-invasive, manual or robotic surgeries.
In embodiments, the cryogen may be introduced through a proximal portion of a catheter, continue along a flexible intermediate section of the catheter, and into the distal treatment section of the catheter. As the cryogen is transported through the catheter, and across the cryoablation treatment region 228, between labels {circle around (2)} and {circle around (3)} in
Thermal insulation along the shaft of the cryotherapy catheter (or apparatus, appliance, needle, probe, etc.) and along the support system that delivers near-critical freeze capability to these needles may use a vacuum.
Flow of the cryogen from the cryogen generator 246 through the catheter 224 or other device may be controlled in the illustrated embodiment with an assembly that includes a check valve 216, a flow impedance, and/or a flow controller. The catheter 224 itself may comprise a vacuum insulation 232 (e.g., a cover or jacket) along its length and may have a cold cryoablation region 228 that is used for the cryogenic applications. Unlike a Joule-Thomson probe, where the pressure of the working cryogen changes significantly at the probe tip, these embodiments of the invention provide relatively little change in pressure throughout the apparatus. Thus, at point {circle around (4)}, the temperature of the cryogen has increased approximately to ambient temperature, but the pressure remains elevated. By maintaining the pressure above or near the critical-point pressure Pc as the cryogen is transported through the catheter, the liquid-gas phase line 256 and vapor lock are avoided.
The cryogen pressure returns to ambient pressure at point {circle around (5)}. The cryogen may then be vented through vent 204 at substantially ambient conditions.
Examples of near critical fluid cryoablation systems, their components, and various arrangements are described in U.S. patent application Ser. No. 10/757,768 which issued as U.S. Pat. No. 7,410,484, on Aug. 12, 2008 entitled “CRYOTHERAPY PROBE”, filed Jan. 14, 2004 by Peter J. Littrup et al.; U.S. patent application Ser. No. 10/757,769 which issued as U.S. Pat. No. 7,083,612 on Aug. 1, 2006, entitled “CRYOTHERAPY SYSTEM”, filed Jan. 14, 2004 by Peter J. Littrup et al.; U.S. patent application Ser. No. 10/952,531 which issued as U.S. Pat. No. 7,273,479 on Sep. 25, 2007 entitled “METHODS AND SYSTEMS FOR CRYOGENIC COOLING” filed Sep. 27, 2004 by Peter J. Littrup et al. and U.S. Pat. No. 8,387,402 to Littrup et al., all of which are incorporated herein by reference, in their entireties, for all purposes.
A method for cooling a target tissue in which the cryogen follows a thermodynamic path similar to that shown in
The further cooled cryogen is provided at block 318 to a cryogenic-application device, which may be used for a cooling application at block 322. The cooling application may comprise chilling and/or freezing, depending on whether an object is frozen with the cooling application. The temperature of the cryogen is increased as a result of the cryogen application, and the heated cryogen is flowed to a control console at block 326. While there may be some variation, the cryogen pressure is generally maintained greater than the critical-point pressure throughout blocks 310-326; the principal change in thermodynamic properties of the cryogen at these stages is its temperature. At block 330, the pressure of the heated cryogen is then allowed to drop to ambient pressure so that the cryogen may be vented, or recycled, at block 334. In other embodiments, the remaining pressurized cryogen at block 326 may also return along a path to block 310 to recycle rather than vent the cryogen at ambient pressure.
Pressure Modulation
Step 510 recites to generate cryogen at or near critical pressure and temperature. Step 510 may be carried out, for example, as described above with reference to
Step 520 recites to lower the cryogen temperature. Step 520 may also be carried out, for example, as described above with reference to
Step 522 recites to determine whether the catheter temperature is below a threshold value. Temperature measurement may be performed using thermocouples placed on the end of the treatment section, or within the transport channels or otherwise along the flow path so as to measure temperature of the apparatus itself, the cryogen, and/or the tissue. Indeed a plurality of temperature sensors may be placed throughout the tip, treatment section, the inlet flowpath, the return flowpath, and preferably, in direct contact with the cryogen to obtain an accurate measurement of real time temperature, temperature change over time, and temperature difference of the incoming cryogen versus the outgoing cryogen.
If the temperature is not below a threshold value, the pressure is not reduced.
If the temperature is below a threshold value, then the pressure is decreased to a pre-set value as indicated by step 524. In embodiments, after the cryo apparatus treatment section is placed adjacent the target tissue to be cooled, and the temperature is confirmed to be below a threshold value, the pressure is substantially reduced from the first relatively high (near critical) pressure to a second lower pressure once the apparatus tip or tissue reaches a target temperature.
Subsequent to determining whether the temperature is below a pre-set value and whether to reduce the pressure, step 530 recites to provide cryogen to a catheter. Step 530 may also be carried out, for example, as described above with reference to
Without being bound by theory, once the catheter freezing element or tissue temperature is lowered to a target cold temperature (for example, −100 degrees C.), the above mentioned problem associated with vapor lock is minimized because the tissue surrounding the apparatus' treatment section is lowered (namely, frozen). The chilled tissue does not act as a heat sink (and warm) the flowing cryogen in the same way that the tissue initially acted as a heat sink to warm the cryogen. The cryogen shall not have a tendency to transform from a liquid phase to vapor phase within the apparatus. The cryogen is anticipated to remain as a liquid, and the gas molar volume does not increase during the flow cycle. Consequently, the embodiment described in
A wide variety of systems may be employed to modulate the pressure between the high (near critical) pressure to a relatively low pressure.
With reference to
After an initial phase, or at which point in time the measured temperature reaches a threshold temperature indicating that the adjacent tissue is substantially cooled, and that the risk of vapor lock is minimized, valve 660 is opened. The cryogen flows to low pressure valve 662, which opens at a second substantially lower pressure than check valve 640. The second low pressure valve may be programmed to open at a pressure ranging from 300 to 0 psi, and more preferably less than or equal to 200 psi. The cryogen may then be further processed, or released to the environment.
The valves described herein may be operated manually or, in embodiments, by using more sophisticated equipment such as a controller. The controller would operate to send signals to the valves and other system components to perform a cryoablation treatment.
The pressure modulated system described herein has both practical and safety advantages over a steady state near critical based cryoablation system. Lower pressure cryogen is easier to work with because there is less energy required to reach the operating pressure, the risk of a leak is less likely at low pressure, the consequences or damage arising from leaks is less with use of a cryogen under a lower pressure. In particular, a leak of a low pressure cryogen would have less impact on equipment, patient safety, and the operator than a leak of high pressure cryogen. Additionally, a low pressure cryogen may be vented directly to the atmosphere.
With reference to
The pressure regulator and valves may be operated manually or, more preferably, using more sophisticated equipment such as a controller which sends signals to the valves and other system components to perform a cryoablation treatment as described herein.
Additionally, the system shown in
Alternatively, the pressure may be modulated in steps as shown in
Still in another embodiment, the pressure may be decreased at a continuous rate as shown in
With reference again to
As described further herein, the system components (including without limitation the piston, valves, pumps, switches, and regulators) may be activated manually or in other embodiments via a controller. A workstation or console as shown in
Cryoablation Catheter
The cryoablation apparatus of the present invention may have a wide variety of configurations. For example, one embodiment of the present invention is a flexible catheter 400 as shown in
A plurality of fluid transfer tubes 420 are shown extending from the connector 410. These tubes include a set of inlet fluid transfer tubes 422 for receiving the inlet flow from the connector and a set of outlet fluid transfer tubes 424 for discharging the outlet flow to the connector 410. In embodiments each of the fluid transfer tubes 422,424 is formed of material that maintains flexibility in a full range of temperatures from −200° C. to ambient temperature. In embodiments, each fluid transfer tube has an inside diameter in a range of between about 0.10 mm and 1.0 mm (preferably between about 0.20 mm and 0.50 mm). Each fluid transfer tube may have a wall thickness in a range of between about 0.01 mm and 0.30 mm (preferably between about 0.02 mm and 0.10 mm).
An end cap 440 is positioned at the ends of the fluid transfer tubes 422, 424 to provide fluid transfer from the inlet fluid transfer tubes 422 to the outlet fluid transfer tubes 424. The endcap is shown having an atraumatic tip. The endcap 440 may be any suitable element for providing fluid transfer from the inlet fluid transfer tubes 422 to the outlet fluid transfer tubes 424. For example, endcap 440 may define an internal chamber, cavity, or passage serving to fluidly connect tubes 422,424.
An outer sheath 430 is also shown in
A temperature sensor 432 is shown on the surface of the distal section. Temperature sensor may be a thermocouple to sense a temperature corresponding to the adjacent tissue, and sends the signal back through a wire in the tube bundle to the console for processing. Temperature sensor may be placed elsewhere along the shaft or within one or more of the fluid transport tubes to determine a temperature difference between inflow and outflow.
In embodiments, the fluid transfer tubes 420 are formed of annealed stainless steel or a polymer such as polyimide. In such configurations, the material may maintain flexibility at near critical temperature. In other embodiments, the transfer tube is shape-forming, deflectable, or steerable to make continuous firm contact with various anatomies. Other suitable device designs including deflectable designs are described in international patent application PCT/US2015/024778, filed Apr. 7, 2015, entitled Endovascular Near Critical Fluid Based Cryoablation Catheter Having Plurality of Preformed Treatment Shapes.
There are many configurations for tube arrangements. In embodiments the fluid transfer tubes are formed of a circular array, wherein the set of inlet fluid transfer tubes comprises at least one inlet fluid transfer tube defining a central region of a circle and wherein the set of outlet fluid transfer tubes comprises a plurality of outlet fluid transfer tubes spaced about the central region in a circular pattern. In the configuration shown in
During operation, the cryogen fluid arrives at the catheter through a supply line from a suitable cryogen source at a temperature close to −200° C. The cryogen is circulated through the multi-tubular freezing zone provided by the exposed fluid transfer tubes, and returns to the connector.
In embodiments, the nitrogen flow does not form gaseous bubbles inside the small diameter tubes under any heat load, so as to not create a vapor lock that limits the flow and the cooling power. By operating at the near critical condition for at least an initial period of energy application, the vapor lock is eliminated as the distinction between the liquid and gaseous phases disappears.
A multi-tubular design may be preferably to a single tube design because the additional tubes can provide a substantial increase in the heat exchange area between the cryogen and tissue. Depending on the number of tubes used, cryo instruments can increase the contact area several times over previous designs having similarly sized diameters with single shafts. However, the invention is not intended to be limited to a single or multi-tube design except where specifically recited in the appended claims.
Cryoablation Console
The console 960 may include or house a variety of components (not shown) such as, for example, a generator, controller, tank, valve, pump, etc. A computer 970 and display 980 are shown in
In embodiments computer 970 is configured or programmed to control cryogen flowrate, pressure, and temperatures as described herein. Target values and real time measurement may be sent to, and shown, on the display 980.
Additionally, a thermally conducting liquid may be disposed within spaces or gaps between the transport tubes and the inner surface of the cover to enhance the device's thermal cooling efficiency during treatment. In embodiments the thermally conductive liquid is water.
Cover 924 is shown being tubular or cylindrically shaped and terminates at distal tip 912. As described herein, the cooling region 914 contains a plurality of fluid delivery and fluid return tubes to transport a cooling fluid through the treatment region 914 causing heat to be transferred/removed from the target tissue. In embodiments, the fluid is transported through the tube bundle under physical conditions near the fluid's critical point in the phase diagram for a first time period, and then the pressure is reduced for a second time period as described herein. The cover serves to, amongst other things, contain the cooling fluid and prevent it from escaping from the catheter in the event a leak forms in one of the delivery tubes.
Although a cover is shown in
Applications
The systems and methods described herein may be used in a wide variety of medical applications including, for example, oncology and cardiovascular applications. Candidate tumors to be ablated with cryoenergy include target tissues and tumors in the thorax, and upper and lower GI. The devices described herein may also be applied to destroy or reduce target tissues in the head and neck.
An exemplary cardiovascular application is endovascular-based cardiac ablation to create elongate continuous lesions. As described herein, creating elongate continuous lesions in certain locations of the heart can serve to treat various conditions such as, for example, atrial fibrillation. See, for example, Patent Application No. 61/981,110, filed Apr. 17, 2014, entitled Endovascular Near Critical Fluid Based Cryoablation Catheter Having Plurality of Preformed Treatment Shapes.
Methods and systems described herein serve to create lesions having a length ranging from 1-15 cm, or 2-10 cm., and more preferably between 5-8 cm. The lesions are preferably continuous and linear, not a series of spots such as in some prior art point-ablation techniques. In accordance with the designs described above, the cryoenergy and heat transfer may be focused on the endocardium, creating a lesion completely through the endocardium (a transmural lesion). Additionally, in embodiments, catheters achieve cooling power without vapor lock by modulating the pressure of the cooling fluid. The cooling fluid is preferably transported near its critical point in the phase diagram for at least a portion of the time of energy activation, and then optionally reduced to a lower pressure.
A cardiac ablation catheter in accordance with the principals of the present invention can be placed in direct contact along the internal lining of the left atrium, thereby avoiding most of the massive heat-sink of flowing blood inside the heart as the ablation proceeds outward.
Additionally, catheter configurations may include substantial bends, or loops which provide both the circumferential, as well as linear, ablations. The catheters described herein may be manipulated to form ring-shaped lesions near or around the pulmonary vessel entries, for example.
Many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
This application claims the benefit of U.S. Provisional Patent Application No. 62/079,299, filed on Nov. 13, 2014, and is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3062017 | Balcar | Nov 1962 | A |
3613689 | Crump | Oct 1971 | A |
3889680 | Armao | Jun 1975 | A |
3942010 | Peterson | Mar 1976 | A |
3993123 | Chu | Nov 1976 | A |
4034251 | Haas | Jul 1977 | A |
4167771 | Simons | Sep 1979 | A |
4226281 | Chu | Oct 1980 | A |
4281268 | Sawa | Jul 1981 | A |
4384360 | Kitadate | May 1983 | A |
4418421 | Kitadate | Nov 1983 | A |
4519389 | Gudkin | May 1985 | A |
4548045 | Aitares | Oct 1985 | A |
4802475 | Weshahy | Feb 1989 | A |
4838041 | Bellows | Jun 1989 | A |
4843446 | Nishino | Jun 1989 | A |
4945562 | Staub | Jul 1990 | A |
4946460 | Merry | Aug 1990 | A |
4982080 | Wilson | Jan 1991 | A |
5012505 | Zupancic | Apr 1991 | A |
5037395 | Spencer | Aug 1991 | A |
5108390 | Potocky | Apr 1992 | A |
5147355 | Friedman | Sep 1992 | A |
5147538 | Wright | Sep 1992 | A |
5155093 | Den | Oct 1992 | A |
5173606 | Weinberger | Dec 1992 | A |
5211646 | Alperovich | May 1993 | A |
5212626 | Bella | May 1993 | A |
5214925 | Hoy | Jun 1993 | A |
5237824 | Pawliszyn | Aug 1993 | A |
5254116 | Baust | Oct 1993 | A |
5274237 | Gallagher | Dec 1993 | A |
RE34502 | Webster | Jan 1994 | E |
5275595 | Dobak, III | Jan 1994 | A |
5324286 | Fowler | Jun 1994 | A |
5334181 | Rubinsky | Aug 1994 | A |
5369384 | Woods | Nov 1994 | A |
5400602 | Chang | Mar 1995 | A |
5405533 | Hazleback | Apr 1995 | A |
5417072 | Silver | May 1995 | A |
5433717 | Rubinsky | Jul 1995 | A |
5452582 | Longsworth | Sep 1995 | A |
5471844 | Levi | Dec 1995 | A |
5494039 | Onki | Feb 1996 | A |
5504924 | Ohashi | Apr 1996 | A |
5520682 | Baust | May 1996 | A |
5531742 | Barken | Jul 1996 | A |
5573532 | Chang | Nov 1996 | A |
5603221 | Maytal | Feb 1997 | A |
5661980 | Gallivan | Sep 1997 | A |
5702435 | Maytal | Dec 1997 | A |
5716353 | Matsura | Feb 1998 | A |
5733280 | Avitall | Mar 1998 | A |
5741248 | Stern | Apr 1998 | A |
5757885 | Yao | May 1998 | A |
5800487 | Mikus | Sep 1998 | A |
5800488 | Crockett | Sep 1998 | A |
5816052 | Foote | Oct 1998 | A |
5885276 | Ammar | Mar 1999 | A |
5899897 | Rabin | May 1999 | A |
5899898 | Arless | May 1999 | A |
5899899 | Arless | May 1999 | A |
5901783 | Dobak, III | May 1999 | A |
5910104 | Dobak, III | Jun 1999 | A |
5916212 | Baust | Jun 1999 | A |
5924975 | Goldowsky | Jul 1999 | A |
5947960 | Griswold | Sep 1999 | A |
5950444 | Matsunagar | Sep 1999 | A |
5957963 | Dobak | Sep 1999 | A |
5978697 | Maytal | Nov 1999 | A |
5993444 | Ammar | Nov 1999 | A |
5997781 | Nishikawa | Dec 1999 | A |
6004269 | Crowley | Dec 1999 | A |
6039730 | Rabin | Mar 2000 | A |
6074412 | Mikus | Jun 2000 | A |
6096068 | Dobak | Aug 2000 | A |
6106518 | Wittenberger | Aug 2000 | A |
6139544 | Mikus | Oct 2000 | A |
6142991 | Schatzberger | Nov 2000 | A |
6161543 | Cox | Dec 2000 | A |
6171277 | Ponzi | Jan 2001 | B1 |
6179831 | Bilweis | Jan 2001 | B1 |
6182666 | Dobak, III | Feb 2001 | B1 |
6190378 | Jarvinen | Feb 2001 | B1 |
6190382 | Ormsby | Feb 2001 | B1 |
6193644 | Dobak, III | Feb 2001 | B1 |
6198974 | Webster | Mar 2001 | B1 |
6235018 | Lepivert | May 2001 | B1 |
6237355 | Li | May 2001 | B1 |
6241722 | Dobak | Jun 2001 | B1 |
6251105 | Mikus | Jun 2001 | B1 |
6263046 | Rogers | Jul 2001 | B1 |
6270493 | Lalonde | Aug 2001 | B1 |
6307916 | Rogers | Oct 2001 | B1 |
6324852 | Cheng | Dec 2001 | B1 |
6341629 | Clark | Jan 2002 | B1 |
6347675 | Kolle | Feb 2002 | B1 |
6355029 | Joye | Mar 2002 | B1 |
6368304 | Aliberto | Apr 2002 | B1 |
6377659 | Snyder | Apr 2002 | B1 |
6396901 | Heil | May 2002 | B1 |
6432174 | Heung | Aug 2002 | B1 |
6440126 | Abboud | Aug 2002 | B1 |
6451011 | Tu | Sep 2002 | B2 |
6471694 | Kudaravalli | Oct 2002 | B1 |
6475212 | Dobak | Nov 2002 | B2 |
6477231 | Snyder | Nov 2002 | B2 |
6486078 | Rangarajan | Nov 2002 | B1 |
6520933 | Evans | Feb 2003 | B1 |
6527765 | Kelman | Mar 2003 | B2 |
6530420 | Takada | Mar 2003 | B1 |
6537271 | Murray | Mar 2003 | B1 |
6544176 | Mikus | Apr 2003 | B2 |
6551309 | LePivert | Apr 2003 | B1 |
6554797 | Worthen | Apr 2003 | B1 |
6572610 | Kovalcheck | Jun 2003 | B2 |
6584332 | Yoshitake | Jun 2003 | B2 |
6602276 | Dobak, III | Aug 2003 | B2 |
6622494 | Pourrahimi | Sep 2003 | B1 |
6622507 | Cotte | Sep 2003 | B2 |
6628002 | Ritz | Sep 2003 | B2 |
6648879 | Joye | Nov 2003 | B2 |
6685720 | Wu | Feb 2004 | B1 |
6706037 | Zvuloni | Mar 2004 | B2 |
6726653 | Noda | Apr 2004 | B2 |
6737225 | Miller | May 2004 | B2 |
6746445 | Abboud | Jun 2004 | B2 |
6767346 | Damasco | Jul 2004 | B2 |
6812464 | Sobolewski | Nov 2004 | B1 |
6848502 | Bishop | Jan 2005 | B2 |
6848458 | Shrinivasan | Feb 2005 | B1 |
6893419 | Noda | May 2005 | B2 |
6893433 | Lentz | May 2005 | B2 |
6905492 | Zvuloni | Jun 2005 | B2 |
6936045 | Yu | Aug 2005 | B2 |
6941953 | Feld | Sep 2005 | B2 |
6989009 | Lafontaine | Jan 2006 | B2 |
7004937 | Lentz | Feb 2006 | B2 |
7022120 | Lafontaine | Apr 2006 | B2 |
7083612 | Littrup | Aug 2006 | B2 |
7110506 | Radley | Sep 2006 | B2 |
7160290 | Eberl | Jan 2007 | B2 |
7220252 | Shah | May 2007 | B2 |
7220257 | Lafontaine | May 2007 | B1 |
7195625 | Lentz | Jul 2007 | B2 |
7258161 | Cosley | Aug 2007 | B2 |
7273479 | Littrup | Sep 2007 | B2 |
7410484 | Littrup | Aug 2008 | B2 |
7648497 | Lane | Jan 2010 | B2 |
7740627 | Gammie | Jun 2010 | B2 |
7842031 | Abboud | Nov 2010 | B2 |
8012147 | Lafontaine | Sep 2011 | B2 |
8080005 | Berzak et al. | Dec 2011 | B1 |
8177780 | Cox | May 2012 | B2 |
8298217 | Lane | Oct 2012 | B2 |
8387402 | Littrup | Mar 2013 | B2 |
8475441 | Babkin | Jul 2013 | B2 |
8641704 | Werneth | Feb 2014 | B2 |
8685014 | Babkin | Apr 2014 | B2 |
8740891 | Babkin | Jun 2014 | B2 |
8740892 | Babkin | Jun 2014 | B2 |
8845628 | Babkin | Sep 2014 | B2 |
8888768 | Babkin | Nov 2014 | B2 |
8945106 | Arless | Feb 2015 | B2 |
9095320 | Littrup | Aug 2015 | B2 |
20010024485 | Rogers | Sep 2001 | A1 |
20010047134 | Holdaway | Nov 2001 | A1 |
20020049409 | Noda | Apr 2002 | A1 |
20020062831 | Beyar | May 2002 | A1 |
20020072741 | Silwa | Jun 2002 | A1 |
20020087152 | Mikus | Jul 2002 | A1 |
20020151331 | Abdelmonem | Oct 2002 | A1 |
20030040740 | Kovalcheck | Feb 2003 | A1 |
20030055415 | Yu | Mar 2003 | A1 |
20030195605 | Kovalcheck | Oct 2003 | A1 |
20030199817 | Thompson | Oct 2003 | A1 |
20040027462 | Hing | Feb 2004 | A1 |
20040118144 | Hsu | Jun 2004 | A1 |
20040148004 | Wallsten | Jul 2004 | A1 |
20040215295 | Littrup | Oct 2004 | A1 |
20050027289 | Castellano | Feb 2005 | A1 |
20050198972 | Lentz et al. | Sep 2005 | A1 |
20050209587 | Joye | Sep 2005 | A1 |
20050261573 | Littrup | Nov 2005 | A1 |
20060235375 | Littrup | Jun 2006 | A1 |
20060212028 | Joye | Sep 2006 | A1 |
20060235357 | Littrup | Oct 2006 | A1 |
20060247611 | Abboud | Nov 2006 | A1 |
20060253114 | Saadat | Nov 2006 | A1 |
20080119836 | Littrup | May 2008 | A1 |
20080312644 | Fourkas | Dec 2008 | A1 |
20090118723 | Lalonde | May 2009 | A1 |
20100057063 | Arless | Mar 2010 | A1 |
20100256621 | Babkin | Oct 2010 | A1 |
20110009854 | Babkin | Jan 2011 | A1 |
20110040297 | Babkin | Feb 2011 | A1 |
20110054453 | Lalonde | Mar 2011 | A1 |
20110162390 | Littrup | Jul 2011 | A1 |
20110184399 | Wittenberger | Jul 2011 | A1 |
20120053575 | Babkin et al. | Mar 2012 | A1 |
20120059364 | Baust | Mar 2012 | A1 |
20120109118 | Lalonde | May 2012 | A1 |
20120209257 | Van Der Weide et al. | Aug 2012 | A1 |
20120253336 | Littrup | Oct 2012 | A1 |
20130073014 | Lim | Mar 2013 | A1 |
20130197498 | Laske | Aug 2013 | A1 |
20130204241 | Baust | Aug 2013 | A1 |
20130324987 | Leung | Dec 2013 | A1 |
20130331829 | Babkin | Dec 2013 | A1 |
20130345688 | Babkin | Dec 2013 | A1 |
20140350537 | Baust | Nov 2014 | A1 |
20140364848 | Heimbecher | Dec 2014 | A1 |
20150250524 | Moriarty | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
1422535 | Jan 1976 | GB |
2283678 | Jun 1996 | GB |
7-136180 | May 1995 | JP |
2008-515469 | May 2008 | JP |
WO1993008751 | May 1993 | WO |
WO1997049344 | Dec 1997 | WO |
WO2002058576 | Aug 2002 | WO |
WO2002096270 | Dec 2002 | WO |
WO2002011638 | Apr 2003 | WO |
2004064914 | Aug 2004 | WO |
WO2004064914 | Mar 2005 | WO |
2006137887 | Dec 2006 | WO |
2009009398 | Jan 2009 | WO |
WO2009067497 | May 2009 | WO |
WO2013013098 | Jan 2013 | WO |
WO2013013099 | Jan 2013 | WO |
WO2015160574 | Oct 2015 | WO |
Entry |
---|
International Search Report for PCT/US2015/056780, dated Jan. 5, 2016. |
International Search Report dated Mar. 18, 2015 for PCT/US14/56839. |
International Search Report dated Jan. 21, 2015 for PCT/US2014/059684. |
International Search Report dated Oct. 1, 2012 for PCT/US2012/047487. |
International Search Report /Written Opinion dated Jan. 14, 2009 for PCT/US2008/084004. |
European Search Report for EP04702597 dated Sep. 18, 2007. |
European Search Report for EP08852254 dated Nov. 19, 2010. |
European Search Report for EP05858178.6 dated Nov. 5, 2010. |
European Search Report for EP10184565 dated Feb. 21, 2011. |
Arai, Y., et al., “Supercritical Fluids,” pp. 161 and 199, ISBN 3540412484, Springer 2002. |
Barron, randall F., “Cryogenic Heat Transfer,” pp. 97, 129 and 130, Taylor & Francis, 1999. |
Lide, D.R. and Keihiaian, H.V., “CRC Handbook of Thermophysical and Thermochemical Data,” p. 375, CRC Press 1994. |
Sun, Ya-ping, Supercritical Fluid Technology in Materials Science and Engineering, pp. 1 and 26, CRC Press 2002. |
Thakore, S.B. and Bhatt, B.I., “Introduction to Process Engineering and Design,” Chemical Engineering Series, pp. 27-28, McGraw-Hill 2008. |
Office Action dated Jul. 26, 2018 for U.S. Appl. No. 14/915,631. |
Office Action dated Jul. 13, 2018 for U.S. Appl. No. 15/028,925. |
Supplemental European Search Report dated Apr. 23, 2018 for EP15858716. |
Australian Examination Report No. 1, dated Jul. 31, 2018 for 2014327045. |
Stuehlinger, M., et al., “CoolLoop First: A First in Man Study to Test a Novel Circular Cryoablation System in Paroxysmal Artial Fibrillation,” Journal of Artial Fibrillation, vol. 81, Issue 3, Oct.-Nov. 2015. |
Skanes, Allan C., et al., “Cryoblation: Potentials and Pitfalls,” doi:10.1046/j.1540-8167.2004.15106.x, Jul. 6, 2004. |
Lemola, Kristina, MD, et al., “Pulmonary Vein Isolation as an End Point for Left Atrial Circumferential Ablation of Atrial Fibrillation,” Journal of American College of Cardiology, vol. 46, No. 6, 2005. |
Rolf, Sascha, MD, et al., “Electroanatomical Mapping of Atrial Fibrillation: Review of the Current Techniques and Advances,” Journal of Artrial Fibrillation, vol. 7, Issue 4, Dec. 2014-Jan. 2015. |
International Search Report dated Dec. 28, 2016 for PCT/US2016/033833. |
International Search Report dated Jan. 31, 2017 for PCT/US2016/051954. |
International Search Report dated Feb. 2, 2017 for PCT/US2016/063882. |
International Search Report dated Jan. 15, 2016 for PCT/US2015/056780. |
Number | Date | Country | |
---|---|---|---|
20160135864 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
62079299 | Nov 2014 | US |