The present invention relates to a pressure protection valve for commercial vehicle air brake systems or other suitable applications.
A pneumatic system having a central air compressor is used to simultaneously provide pressurized air to two pneumatic circuits. The first pneumatic circuit is known as a critical circuit, which provides pressurized air to critical components, and the second is commonly referred to as an auxiliary circuit, which serves auxiliary components. If a leak or catastrophic failure occurs in one of the circuits, air pressure may be reduced in the critical circuit to below minimum operating parameters, thereby causing the loss of operation of critical components. To mitigate this effect, a pressure protection valve may be installed between the compressor and the auxiliary circuit. The pressure protection valve, upon sensing a loss of air pressure in the inlet of the pressure protection valve due to a leak or failure in either circuit, will isolate the auxiliary circuit from the compressor, preserving pressurized air for the critical circuit.
Pressure protection valves are particularly used in Class 8 motor vehicles which are manufactured with a pneumatic system that includes a critical circuit and an auxiliary circuit. The critical components served by the critical circuit typically include a primary pneumatic braking system and a secondary pneumatic braking system. The auxiliary circuit typically serves auxiliary components such as an exhaust brake, air horn, or air suspension systems.
However, existing pressure protection valves have various limitations. Existing valves have many components making them expensive to manufacture and susceptible to failures and are often difficult to install and orient to connecting air lines.
Embodiments of this invention will now be described in further detail with reference to the accompanying drawings, in which:
An embodiment of the present invention is shown in
The moving sleeve 60 is best shown in
Referring to
Prior art valves are typically in the form of a separate unit that must be attached via fittings to the outside of the air reservoir. Referring to
The pressure protection valve is modular such that the swivel outlet portion 50 may have multiple outlet configurations to suit customer applications while reducing overall air brake system component, complexity, and cost. A double outlet 50′, triple outlet 50″, and inline configuration 50″ is shown in
The typical pressure protection valve has an atmospheric vent 80 which is completely open and subject to intrusion by dirt, road debris, and fluids—such as the vent 80 shown in
The vent shield 110 is made from a flexible material that allows it to act as a valve. The vent 110 shield spans between a portion of the body 20 and upper swivel portion 40 in a manner that does not prevent the rotation of the upper swivel portion 40. The geometry of the vent shield 110 allows sealing at two points, A & B, with point A being on the upper swivel portion 40 and point B being on the body 20. These points also serve as “pivot” points when differential pressures act upon the shield 110. When the pressure protection valve shifts open, positive pressure is created in the atmospheric vent port 80′. This positive pressure causes the shield to pivot at point B, and flex open at point A to vent the pressure. When the pressure is equalized, point A returns to its normal sealed position. Conversely, when the pressure protection valve shifts to a closed state, a vacuum is created in the atmospheric vent port 80′ which causes the shield to pivot at point A, and allow point B to flex inward, relieving the vacuum and equalizing the pressure differential.
Although the principles, embodiments and operation of the present invention have been described in detail herein, this is not to be construed as being limited to the particular illustrative forms disclosed. They will thus become apparent to those skilled in the art that various modifications of the embodiments herein can be made without departing from the spirit or scope of the invention.
The present application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/232,541, filed Aug. 10, 2009, the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/44965 | 8/10/2010 | WO | 00 | 4/9/2012 |
Number | Date | Country | |
---|---|---|---|
61232541 | Aug 2009 | US |