The present invention relates to engines, and more particularly, to regulating the pressure within the crankcases of internal combustion engines by means of a pressure regulator assembly for a crank case. More particularly, the regulator comprises a moveable member which cooperates with a partition to provide a variable orifice to maintain a near constant vacuum (negative pressure) in the crank case.
Closed crankcase emission control systems require a high efficiency filter and crankcase pressure regulator. The high efficiency filter is required to filter out small sized particles to prevent contamination of the air, turbochargers, aftercooler, and internal engine components. The pressure regulator maintains acceptable levels of crankcase pressure.
In one example of the prior art, a pressure control assembly uses a diaphragm and a spring biasing means to maintain a constant vacuum in the system. The spring would cooperate with the diaphragm causing a valve within the diaphragm to move a variable orifice in order to maintain constant pressure. The problem with using a diaphragm and spring is that this type of system requires the use of a lot of small moving parts. The springs would eventually wear over time and need to be replaced before they failed.
In another example of the prior art, to make sure the vacuum in the crank case remains at a set negative pressure the valve member moves between at least fully closed, partially open and fully open positions. In a partially open position as compared to a fully open position the pressure drop between the points upstream of the valve to the point downstream of the valve is increased. The regulator chamber and an atmospheric chamber are formed in a housing. A diaphragm coupled to the housing, delimits the regulator chamber from the atmospheric chamber. The diaphragm and housing also delimit the atmospheric chamber which is opposite and below the regulator chamber. During operation, the positive atmospheric pressure in the atmospheric chamber can cause a plate and diaphragm and any weights to move upward, the movement causes the valve member to move up thereby placing the valve in a partially open or closed position from an open position or partially open position.
In the above embodiment the regulator chamber is always open to the crank case emissions by way of a channel in the valve member always open to the crank case emissions receiving port in the regulator housing and always open to the regulator chamber. The regulator is unidirectional. It has a first port which always must serve as the crank case emissions receiving port and a second port which always must serve as the crank case emissions exhaust port.
In one embodiment of the present disclosure a filter is combined with a pressure regulator. The combination includes a primary housing carrying an air/oil separation element. A hollow of the primary housing is partitioned into a first hollow portion and a second portion. A fluid receiving port opens into the first hollow portion and an exhaust port leads out of the second hollow portion. A valve member extends into a throat of the element. The valve member has a fluid receiving hollow, a first fluid aperture opening through a wall of the valve member and into the valve hollow, and a second fluid aperture opening through a wall of the valve member and into said valve hollow. A secondary housing forms a regulator chamber and an atmospheric chamber. A partition of the secondary housing delimits and fluidly seals the atmospheric chamber from the regulator chamber. The partition is moveable in opposite axial directions responsive to a change in a pressure differential between the atmospheric chamber and regulator chamber without the use of a spring. The valve hollow opens into and is in fluid connection with the regulator chamber. The valve hollow is fluidly sealed off from said atmospheric chamber. The valve member is fixedly coupled to the partition of said secondary housing. The secondary housing is carried by the primary housing. A diaphragm forms at least part of said partition which delimits and fluidly seals the atmospheric chamber from the regulator chamber. The combination delimits a fluid pathway wherein fluid received through said fluid receiving port which is exhausted from said exhaust port first enters the first hollow portion, next passes through the first valve aperture, then passes into the valve hollow, then exits the valve hollow through the second valve aperture, then passes into the throat of the element, then passes out of the throat of the element through a wall of the element, and then passes into the second portion of the hollow.
In a further embodiment a closed crankcase emission control system includes a filter, a crankcase, a negative pressure source, and a pressure regulator, and an available clearance height. The pressure regulator includes a housing delimiting an emission void space. A first port opens into the emission void space. A second port opens into the emission void space; the first and second ports are bi directional. A valve body is in the emission void space. The valve body has a channel therein. The valve body has apertures opening into the channel. A diaphragm forms at least part of a partition between an atmospheric and regulator chamber. The atmospheric and regulator chamber are in the housing. The valve body is fixedly coupled to the partition. A fluid pathway is defined wherein emissions enter the first port, then from the first port pass through the valve apertures, from the apertures they enter into the valve channel, and from the valve channel they exit into and out from second port. A port opens out of the regulator chamber and is outside of the valve body. The valve apertures orient to differing partially open positions based on a change in pressure without the aid of a spring. Also the partition moves up and down in the axial direction due to a pressure differential between the regulator chamber and the atmospheric chamber without the aid of a spring.
In still a further embodiment, a filter is combined with a pressure regulator. In this combination a fluid port opens out of the regulator chamber and is outside of the valve body.
The present invention is described with reference to the following figures:
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and arrangement of components set forth in the following description or as illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
Looking at
A regulator chamber 45 and an atmospheric chamber 47 are carried by a first end section 49 of the main body 51 of the housing. The atmospheric chamber 47 at a first end has a delimiting first wall surface 53 which delimits the first end of the chamber 47. The wall surface is formed on a first wall 55. The wall 55 is flat and planar and rigid. The chamber at its sides is also delimited by a first side wall surface 57. The first sidewall surface 57 is rigid and is formed on a sidewall 58 and is curvilinear and circumferential. It is continuous except where apertures 59 open through the sidewall 58. The apertures 59 place the atmospheric chamber 47 in fluid communication with atmosphere or the environment external to the regulator housing. The chamber 47 at its side is also delimited by an elastomeric sidewall surface 61 formed on an elastomer member 62 which is a diaphragm. The atmospheric chamber 47 at a second end has a second delimiting wall surface 63 which delimits the chamber at its second end section. The second wall surface is formed on a second wall 64. The wall surface comprises an elastomeric surface 63a formed on the diaphragm 62. It also comprises a rigid surface. The rigid surface is radially inward of the elastomeric surface and is formed on a rigid plate 65 with a planar portion As explained in more detail below, the void space volume enclosed in the atmospheric chamber 47 increases and decreases as the apertures 41 in the valve member main body 43 carried in the housing orients between at least a closed position, partially open positions, and a fully open position.
The regulator chamber 45, at a first end has a delimiting wall surface 67 which delimits the first end of the chamber 45. The wall surface is formed on the second wall 64. The wall surface comprises an elastomeric surface 69 formed on the diaphragm 62. It also comprises a rigid surface. The rigid surface is radially inward of the elastomeric surface and is formed on a rigid plate 71 with a planar portion. The second wall 64 thus comprises portions of the diaphragm 62, the rigid plate 65 and the rigid plate 71. It also comprises weight 71a which can be part of the rigid plate 71. The regulator chamber 45 at its sides is also delimited by a side wall surface 73. The sidewall surface is rigid and is formed on a sidewall and is curvilinear and circumferential. It is continuous. It is a sidewall of a cover 75 which is coupled to the main housing body 51 at the body first end section 49. The chamber 45 at its side is also delimited by an elastomeric sidewall surface 77 formed on the elastomer member 62 which is the diaphragm. The chamber 45 at a second end has a delimiting wall surface which delimits the chamber at its second end. The surface is formed on a wall 78. The wall comprises a rigid surface. The rigid surface is on a rigid planar portion of the cover 75. As explained in more detail below, the void space volume enclosed in the chamber 45 increases and decreases as the apertures 41 in the valve member main body 43 orient between at least the closed position, partially open positions, and fully open position. The regulator chamber 45 is fluidly sealed off from the atmospheric chamber 47. It is fluidly sealed off in part by the wall 64 which is a partition between the atmospheric chamber 47 and the regulator chamber 45.
The regulator chamber 45 is fluidly sealed from the valve member body 43, channel 37 and apertures 41 in the valve member body and cavern 33 to prevent the crankcase emissions 19 received from the crankcase 15 into the cavern 33 from passing from the cavern 33 into the chamber 45. It is also sealed to prevent crankcase emissions 19 received from the crankcase 15 into the channel 37 of the valve member 39 from passing through the channel 37 into the chamber 45. The wall 55, at the first end section 49 of the main housing body 51, seals off the atmospheric chamber 47 from the cavern 33 and channel 37 in the valve. The wall 64 seals off the regulator chamber from the atmospheric chamber and the cavern 33 and channel 37 in the valve to provide the sealing off of the emissions 19 as described above. The valve member 39 has an elongated member 80 which extends through a hole 81 in the wall 55 and a hole 83 in the wall 64. Member 80 extends through a bushing 82 which is in the hole 81 in the wall 55. The bushing 82 provides a seal between the elongated member 80 and hole 81 to prevent the crank case emissions 19 received from the crank case into the cavern 33 from passing from the cavern 33 through the hole 81 or bushing 82 into the chamber 47 and to prevent crankcase emissions 19 received from the crankcase into the channel 37 of the valve from passing from channel 37 through the hole 81 or bushing 82 into the chamber 47. The elongated member 80 is a rod. The member is moveable in the axial direction relative to the wall 55 and bushing 82.
The elongated member 80 is fixedly coupled to a valve main body 43 of the valve 39. The valve main body 43 has the apertures 41. The elongated member 80 is fixedly coupled to wall 64. As the wall 64 moves back and forth in the axial direction without the aid of a spring the valve body 43 moves back and forth in the axial direction without the aid of a spring. The back and forth movement which can be called an up and down movement of the valve body 43 orients the apertures 41 between the closed position, partially open positions, and a fully open position. The apertures 41 move up and down to make sure the negative pressure in the crank case remains at a set predetermined pressure for example negative 3 inches of water. The measurement could be in inches of mercury.
The following example shows in more detail how it works. The desired pressure in the crank case 15 is negative 3 inches. The pressure drop across the filter 17 is negative 2 inches and the negative pressure of the negative pressure source is negative 10 inches. Those in the art frequently refer to the negative pressure source as a vacuum source. The pressure drop across the valve, if left in the fully open position, is negative 2. The valve if left fully open will mean an increase in the crank negative pressure above the desired pressure. The increase is undesirable because it removes to much dirty emissions. To prevent the increase, the regulator valve main body 43 moves upward in the axial direction to orient the aperture from the fully open position to a partially open position. The valve body moves in the axial direction because the atmospheric pressure overcomes the force exerted by the wall 64, which is typically weighted, and moves the wall in the axial direction which pulls the elongated member 80 and valve body 43 in the axial direction which orients the apertures 41 to the partially open position. The apertures open to a partially open position which is within a range of predetermined open positions. The partial opening as compared to the full opening provides an increase in the pressure drop across the valve body 43 to ensure the crankcase pressure, which is referenced by regulator chamber 45 by a fluid line 85 extending from the chamber 45 to the crankcase 15, stays at the desired negative pressure. In this case the pressure in the crank case chamber is at negative 3 inches. If the filter becomes clogged, the pressure drop across the filter increases. Thus the negative pressure in the crank case if the valve were left in place would change to less than negative three inches. It could for instance be negative 1. To prevent the change, the valve main body 43 reorients to place the apertures 41 in a more fully open position. The valve body 43 moves down because the force exerted in the axial direction by the wall 64, which is typically weighted, increases and overcomes the atmospheric force in the atmospheric chamber 47 causing the wall 64 to move in the axial direction. The movement causes the member 80 and valve body 43 to move down which causes the apertures 41 to orient closer to a more fully open position. The change in the size of the opening of the apertures 41 into the cavern 33 provides a decrease in the pressure drop across the valve member to less negative to ensure the crankcase pressure, which is referenced by the regulator chamber 45 through a fluid line 85 extending from the chamber 45 to the crankcase 15, stays at the desired negative pressure.
As understood by the above the apertures orient from a closed position, to partially open positions, to an open position based on a change in pressure without the aid of a spring. The valve is thus spring less. The change in pressure is in the regulator assembly. The wall 64 which is a partition moves up and down in the axial direction due to a pressure differential between the regulator chamber and the atmospheric chamber. The partition moves without the aid of a spring. As the partition moves up and down in the axial directions the valve moves up and down and the valve apertures orient between open, closed and partially open positions. The valve is fixedly coupled to the partition.
The regulator defines a fluid pathway. Emissions enter first port 21, then from the first port 21 pass through the apertures 41, from the apertures 41 they enter into channel 37, from channel 37 they exit into and out from second port 27.
The regulator is configured to provide the first port 21 and first port connector 25 to be bi-directional. The port 21 and connector 25 operate as either a port and connector to receive crankcase emissions or a port and connector to exhaust crankcase emissions. The port 21 and connector 25 comprise an orientation selectable from a group consisting of a crankcase emission receiving port and a crankcase emission exhaust port.
The regulator is configured to provide the second port 27 and second port connector 29 to be bi-directional. The port 27 and connector 29 operate as either a port and connector to receive crankcase emissions or a port and connector to exhaust crankcase emissions. The port 27 and connector 29 comprise an orientation selectable from a group consisting of a crankcase emission receiving port and a crankcase emissions exhaust port.
The regulator chamber 45 has a port 87 which opens into the chamber 45 through an external surface of the regulator housing. It opens through the cover 75. The port 87 is outside the valve body 43, cavern 33 and body 51. A port connector connects the port to line 85. The fluid line 85 is connected to a crank case reference point. The crank case reference point in the present example is the crank case chamber.
The valve body main member 43 has apertures 42 at a first end. The holes allow emissions to escape through the member 43 at the first end. The emissions prevent the first end of the valve member main body from unduly coupling to the wall 55.
Under the old system the filter is mounted downstream of the pressure regulator assembly. Thus the pressure regulator assembly is not available to kill off available negative pressure to the filter. The available negative pressure runs over the filter. Accordingly, the clearance height used must be at least equal to or greater than the available negative pressure divided by the conversion factor. If the height used is less than the available negative pressure divided by the conversion factor then the filter will flood when the system begins operation when the filter is first installed. Thus if the clearance height available for mounting the filter above the high oil level of the crankcase is less than the available negative pressure 31 divided by a conversion factor K the old system cannot be used.
An advantage of the above system 13 is that it can be used when the clearance height available for mounting the filter above the high oil level of the crankcase is less than the available negative pressure 31 divided by a conversion factor K. The system 13 has the pressure regulator downstream of the filter. Thus the pressure regulator is available to kill off available negative pressure. Accordingly, if the clearance height available is less than the available negative pressure divided by the conversion factor than the clearance height used is equal to the clearance height available multiplied by the conversion factor K. If the clearance height available is equal to or greater than the available negative pressure divided by the conversion factor than the clearance height used is equal to the available negative pressure divided by the conversion factor.
The regulator of
The above described embodiment of the invention is intended to be illustrative only. Numerous alternative embodiments may be devised by those skilled in the art without departing from the spirit and scope of the following claims.
Number | Date | Country | |
---|---|---|---|
62260197 | Nov 2015 | US | |
62301956 | Mar 2016 | US |