Pressure reinforced plastic container having a moveable pressure panel and related method of processing a plastic container

Information

  • Patent Grant
  • 8381940
  • Patent Number
    8,381,940
  • Date Filed
    Friday, April 28, 2006
    18 years ago
  • Date Issued
    Tuesday, February 26, 2013
    11 years ago
Abstract
A plastic container comprises an upper portion including a finish adapted to receive a closure, a lower portion including a base, and a sidewall extending between the upper portion and the lower portion. The upper portion, the lower portion, and the sidewall define an interior volume for storing liquid contents. The plastic container further comprises a pressure panel located on the container and moveable between an initial position and an activated position. The pressure panel is located in the initial position prior to filling the container, and is moved to the activated position after filling and sealing the container. Moving the pressure panel from the initial position to the activated position reduces the internal volume of the container and creates a positive pressure inside the container. The positive pressure reinforces the sidewall. A method of processing a container is also disclosed.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to plastic containers, and more specifically, to plastic containers in which the contents are pressurized to reinforce the walls of the containers.


2. Related Art


In order to achieve the strength characteristics of a glass bottle, conventional lightweight plastic containers are typically provided with rib structures, recessed waists, or other structures that reinforce the sidewall of the container. While known reinforcing structures usually provide the necessary strength, they tend to clutter the sidewall of the container and detract from the desired smooth, sleek appearance of a glass container. In addition, the known reinforcing structures often limit the number of shapes and configurations that are available to bottle designers. Thus, there remains a need in the art for a relatively lightweight plastic container that has the strength characteristics of a glass container as well as the smooth, sleek appearance of a glass container, and offers increased design opportunities.


BRIEF SUMMARY OF THE INVENTION

In summary, the present invention is directed to a plastic container having a structure that reduces the internal volume of the container in order to create a positive pressure inside the container. The positive pressure inside the container serves to reinforce the container, thereby reducing the need for reinforcing structures such as ribs in the sidewall. This allows the plastic container to have the approximate strength characteristics of a glass container and at the same time maintain the smooth, sleek appearance of a glass container.


In one exemplary embodiment, the present invention provides a plastic container comprising an upper portion including a finish adapted to receive a closure, a lower portion including a base, a sidewall extending between the upper portion and the lower portion, wherein the upper portion, the lower portion, and the sidewall define an interior volume for storing liquid contents. A pressure panel is located on the container and is moveable between an initial position and an activated position, wherein the pressure panel is located in the initial position prior to filling the container and is moved to the activated position after filling and sealing the container. Moving the pressure panel from the initial position to the activated position reduces the internal volume of the container and creates a positive pressure inside the container. The positive pressure reinforces the sidewall.


According to another exemplary embodiment, the present invention provides a plastic container comprising an upper portion having a finish adapted to receive a closure, a lower portion including a base, and a sidewall extending between the upper portion and the lower portion, a substantial portion of the sidewall being free of structural reinforcement elements, and a pressure panel located on the container and moveable between an initial position and an activated position. After the container is filled and sealed, the sidewall is relatively flexible when the pressure panel is in the initial position, and the sidewall becomes relatively stiffer after the pressure panel is moved to the activated position.


According to yet another exemplary embodiment, the present invention provides a method of processing a container comprising providing a container comprising a sidewall and a pressure panel, the container defining an internal volume, filling the container with a liquid contents, capping the container to seal the liquid contents inside the container, and moving the pressure panel from an initial position to an activated position in which the pressure panel reduces the internal volume of the container, thereby creating a positive pressure inside the container that reinforces the sidewall.


Further objectives and advantages, as well as the structure and function of preferred embodiments, will become apparent from a consideration of the description, drawings, and examples.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the invention will be apparent from the following, more particular description of a preferred embodiment of the invention, as illustrated in the accompanying drawings wherein like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.



FIG. 1 is a perspective view of an exemplary embodiment of a plastic container according to the present invention;



FIG. 2 is a side view of the plastic container of FIG. 1;



FIG. 3 is a front view of the plastic container of FIG. 1;



FIG. 4 is a rear view of the plastic container of FIG. 1;



FIG. 5 is a bottom view of the plastic container of FIG. 1;



FIG. 6 is a cross-sectional view of the plastic container of FIG. 1 taken along line A-A of FIG. 3, shown with a pressure panel in an initial position;



FIG. 6A is a schematic cross-sectional view of a pressure panel in the base of a plastic container such as that shown in the embodiment depicted in FIG. 6 prior to inversion of the pressure panel from the initial position to the activated position;



FIG. 7 is a cross-sectional view of the plastic container of FIG. 1 taken along line A-A of FIG. 3, shown with the pressure panel in an activated position;



FIG. 7A is a schematic cross-sectional view of the pressure panel in the base of a plastic container such as that shown in the embodiment depicted in FIG. 7 after inversion of the pressure panel from the initial position to the activated position;



FIGS. 8A-8C schematically represent the steps of an exemplary method of processing a container according to the present invention;



FIG. 9 is a pressure verses time graph for a container undergoing a method of processing a container according to the present invention;



FIG. 10 is a side view of an alternative embodiment of a plastic container according to the present invention;



FIG. 11 is a side view of another alternative embodiment of a plastic container according to the present invention;



FIG. 12 is a side view of another alternative embodiment of a plastic container according to the present invention;



FIG. 13 is a side view of yet another alternative embodiment of a plastic container according to the present invention;



FIG. 14A is a cross-sectional view of the plastic container of FIG. 13, taken along line B-B of FIG. 13, prior to filling and capping the container; and



FIG. 14B is a cross-sectional view of the plastic container of FIG. 13, taken along line B-B of FIG. 13, after filling, capping, and activating the container.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. While specific exemplary embodiments are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without departing from the spirit and scope of the invention. All references cited herein are incorporated by reference as if each had been individually incorporated.


The present invention relates to a plastic container having one or more structures that allow the internal volume of the container to be reduced after the container has been filled and sealed. Reducing the internal volume of the container may result in an increase in pressure inside the container, for example, by compressing the headspace of the filled container. The pressure increase inside the container can have the effect of strengthening the container, for example, increasing the container's top-load capacity or hoop strength. The pressure increase can also help ward off deformation of the container that may occur over time, for example, as the container loses pressure due to vapor loss. In addition, the reduction in internal volume can be adjusted to compensate for the internal vacuum that often develops in hot-filled containers as a result of the cooling of the liquid contents after filling and capping. As a result, plastic containers according to the present invention can be designed with relatively less structural reinforcing elements than prior art containers. For example, plastic containers according to the present invention may have fewer reinforcing elements in the sidewall as compared to prior art designs.


Referring to FIGS. 1-4, an exemplary container embodying the principles of the present invention is shown. Container 10 generally includes an upper portion 12 including a finish 14 adapted to receive a closure, such as a cap or a spout. Container 10 also includes a lower portion 16 including a base 18, which may be adapted to support container 10, for example, in an upright position on a generally smooth surface. A sidewall 20 extends between the upper portion 12 and the lower portion 16. The upper portion 12, lower portion 16, and sidewall 20 generally define an interior volume of container 10, which can store liquid contents, such as juices or other beverages. According to one exemplary embodiment of the invention, the liquid contents can be hot filled, as will be described in more detail below. Container 10 is typically blow molded from a plastic material, such as a thermoplastic polyester resin, for example, PET (polyethylene terephthalate), or polyolefins, such as PP and PE, although other materials and methods of manufacture are possible.


Referring to FIG. 5, base 18, or some other portion of container 10, can include a pressure panel 22. Pressure panel 22 can be activated to reduce the internal volume of the container 10 once it is filled and sealed, thereby creating a positive pressure inside container 10. For example, activating pressure panel 22 can serve to compress the headspace of the container (i.e., the portion of the container that is not occupied by liquid contents). Based on the configuration of the pressure panel 22, the shape of container 10, and/or the thickness of sidewall 20, the positive pressure inside container 10 can be sufficiently large to reinforce container 10, and more specifically, sidewall 20. As a result, and as shown in FIGS. 1-4, sidewall 20 can remain relatively thin and still have at least a substantial portion that is free of known structural reinforcement elements (such as ribs) that were previously considered necessary to strengthen containers, and which can detract from the sleek appearance of containers.


Referring to FIGS. 1-4, sidewall 20 can have a generally circular cross-section, although other known cross-sections are possible. The portions of the sidewall 20 that are free of structural reinforcement elements may have ornamental features, such as dimples, textures, or etchings. Additionally or alternatively, sidewall 20 can include one or more grip panels, for example, first grip panel 24 and second grip panel 26. It is known in the prior art for grip panels to serve as reinforcement elements, however, this may not be necessary with grip panels 24, 26 if the pressure panel 22 is configured to provide sufficient pressure inside container 10. Accordingly, simplified grip panels (e.g., without stiff rib structures) may be provided that do not serve as reinforcement elements, or that do so to a lesser extent than with prior art containers.


Referring to FIGS. 5-7, base 18 can include a standing ring 28. Pressure panel 22 can be in the form of an invertible panel that extends from the standing ring 28 to the approximate center of the base 18. In the exemplary embodiment shown, pressure panel 22 is faceted and includes a push-up 30 proximate its center, although other configurations of pressure panel 22 are possible. Standing ring 28 can be used to support container 10, for example on a relatively flat surface, after the pressure panel 22 is activated.


Pressure panel 22 can be activated by moving it from an initial position (shown in FIG. 6) in which the pressure panel 22 extends outward from container 10, to an activated position (shown in FIG. 7) in which the pressure panel 22 extends inward into the interior volume of the container 10. In the exemplary embodiment shown in FIGS. 5-7, moving pressure panel 22 from the initial position to the activated position effectively reduces the internal volume of container 10. This movement can be performed by an external force applied to container 10, for example, by pneumatic or mechanical means.


Container 10 can be filled with the pressure panel 22 in the initial position, and then the pressure panel 22 can be moved to the activated position after container 10 is filled and sealed, causing a reduction in internal volume in container 10. This reduction in the internal volume can create a positive pressure inside container 10. For example, the reduction in internal volume can compress the headspace in the container, which in turn will exert pressure back on the liquid contents and the container walls. It has been found that this positive pressure reinforces container 10, and in particular, stiffens sidewall 20 as compared to before the pressure panel 22 is activated. Thus, the positive pressure created as a result of pressure panel 22 allows plastic container 10 to have a relatively thin sidewall yet have substantial portions that are free of structural reinforcements as compared to prior art containers. One of ordinary skill in the art will appreciate that pressure panel 22 may be located on other areas of container 10 besides base 18, such as sidewall 20. In addition, one of ordinary skill in the art will appreciate that the container can have more than one pressure panel 22, for example, in instances where the container is large and/or where a relatively large positive pressure is required inside the container.


The size and shape of pressure panel 22 can depend on several factors. For example, it may be determined for a specific container that a certain level of positive pressure is required to provide the desired strength characteristics (e.g., hoop strength and top load capacity). The pressure panel 22 can thus be shaped and configured to reduce the internal volume of the container 10 by an amount that creates the predetermined pressure level. For containers that are filled at ambient temperature, the predetermined amount of pressure (and/or the amount of volume reduction by pressure panel 22) can depend at least on the strength/flexibility of the sidewall, the shape and/or size of the container, the density of the liquid contents, the expected shelf life of the container, and/or the amount of headspace in the container. Another factor to consider may be the amount of pressure loss inside the container that results from vapor loss during storage of the container. Yet another factor may be volume reduction of the liquid contents due to refrigeration during storage. For containers that are “hot filled” (i.e., filled at an elevated temperature), additional factors may need to be considered to compensate for the reduction in volume of the liquid contents that often occurs when the contents cool to ambient temperature (and the accompanying vacuum that may form in the container). These additional factors can include at least the coefficient of thermal expansion of the liquid contents, the magnitude of the temperature changes that the contents undergo, and/or water vapor transmission. By considering all or some of the above factors, the size and shape of pressure panel 22 can be calculated to achieve predictable and repeatable results. To allow for increased evacuation of vacuum it will be appreciated that it is preferable to provide a steep angle to a control portion 70 of the pressure panel 22. As shown in FIG. 6A, for example, the control portion 70 of the panel 22 may be set with an angle varying between 30 degrees and 45 degrees relative to a plane B-B oriented perpendicular to the longitudinal axis of the container. It is preferable to ensure an angle is set above 10 degrees at least. An initiator portion 80 of the pressure panel 22 may, in this embodiment, have a lesser angle of perhaps at least 10 degrees less than the control portion 70. By way of example, it will be appreciated that when the pressure panel 22 is inverted by mechanical compression (see FIG. 8c), it will undergo an angular change that is double that provided to it. For example, if the conical control portion 70 is set to 10 degrees it will provide a panel change equivalent to 20 degrees when inverted. At such a low angle, however, it has been found to provide an inadequate amount of vacuum compensation in a hot-filled container. Therefore, it is preferable to provide much steeper angles. Referring to FIGS. 6A and 7A, it will be appreciated that the control portion 70 may be initially set to be outwardly inclined by approximately 35 degrees and will then provide an inversion and angle change of approximately 70 degrees. The initiator portion 80 may in this example be 20 degrees. It should be noted that the positive pressure inside the container 10 is not a temporary condition, but rather, should last for at least 60 days after the pressure panel is activated, and preferably, until the container 10 is opened.


Referring to FIGS. 8A-8C, an exemplary method of processing a container according to the present invention is shown. The method can include providing a container 10 (such as described above) having the pressure panel 22 in the initial position, as shown in FIG. 8A. The container 10 can be provided, for example, on an automated conveyor 40 having a depressed region 42 configured to support container 10 when the pressure panel 22 is in the initial, outward position. A dispenser 44 is inserted into the opening in the upper portion 12 of the container 10, and fills the container 10 with liquid contents. For certain liquid contents (e.g., juices), it may be desirable to fill the container 10 with the contents at an elevated temperature (i.e., above ambient temperature). Once the liquid contents reach a desired fill level inside container 10, the dispenser 44 is turned off and removed from container 10. As shown in FIG. 8B, a closure, such as a cap 46, can then be attached to the container's finish 14, for example, by moving the cap 46 into position and screwing it onto the finish 14 with a robotic arm 48. One of ordinary skill in the art will appreciate that various other techniques for filling and sealing the container 10 can alternatively be used.


Once the container 10 is filled and sealed, the pressure panel 22 can be activated by moving it to the activated position. For example, as shown in FIG. 8C, a cover 50, arm, or other stationary object may contact cap 46 or other portion of container 10 to immobilize container 10 in the vertical direction. An activation rod 52 can engage pressure panel 22, preferably proximate the push-up 30 (shown in FIG. 7) and move the pressure panel 22 to the activated position (shown in FIG. 7). The displacement of pressure panel 22 by activation rod 52 can be controlled to provide a predetermined amount of positive pressure, which, as discussed above, can depend on various factors such as the strength/flexibility of the sidewall 20, the shape and/or size of the container, etc.


In the exemplary embodiment shown in FIG. 8C, the activation rod 52 extends through an aperture 54 in conveyor 40, although other configurations are possible. In the case where the liquid contents are filled at an elevated temperature, the step of moving the pressure panel 22 to the inverted position can occur after the liquid contents have cooled to room temperature.


As discussed above, moving the pressure panel 22 to the activated position reduces the internal volume of container 10 and creates a positive pressure therein that reinforces the sidewall 20. As also discussed above, the positive pressure inside container 10 can permit at least a substantial portion of sidewall 20 to be free of structural reinforcements, as compared to prior art containers.



FIG. 9 is a graph of the internal pressures experienced by a container undergoing an exemplary hot-fill process according to the present invention, such as a process similar to the one described above in connection with FIGS. 8A-C. When the container is initially hot filled and capped, at time t0, a positive pressure exists within the sealed container, as shown on the left side of FIG. 9. After the container has been hot filled and capped, it can be left to cool, for example, to room temperature, at time t1. This cooling of the liquid contents usually causes the liquid contents to undergo volume reduction, which can create a vacuum (negative pressure) within the sealed container, as represented by the central portion of FIG. 9. This vacuum can cause the container to distort undesirably. As discussed previously, the pressure panel can be configured and dimensioned to reduce the internal volume of the container by an amount sufficient to eliminate the vacuum within the container, and moreover, to produce a predetermined amount of positive pressure inside the container. Thus, as shown on the right side of the graph in FIG. 9, when the pressure panel is activated, at time t2, the internal pressure sharply increases until it reaches the predetermined pressure level. From this point on, the pressure preferably remains at or near the predetermined level until the container is opened.


Referring to FIGS. 10-13, additional containers according to the present invention are shown in side view. Similar to container 10 of FIGS. 1-7, containers 110, 210, and 310 generally include an upper portion 112, 212, 312, 412 including a finish 114, 214, 314, 414 adapted to receive a closure. The containers 110, 210, 310, 410 also include a lower portion 116, 216, 316, 416 including a base 118, 218, 318, 418, and a sidewall 120, 220, 320, 420 extending between the upper portion and lower portion. The upper portion, lower portion, and sidewall generally define an interior volume of the container. Similar to container 10 of FIGS. 1-7, containers 110, 210, 310, and 410 can each include a pressure panel (see pressure panel 422 shown in FIG. 13; the pressure panel is not visible in FIGS. 10-12) that can be activated to reduce the internal volume of the container, as described above.


Containers according to the present invention may have sidewall profiles that are optimized to compensate for the pressurization imparted by the pressure panel. For example, containers 10, 110, 210, 310, and 410, and particularly the sidewalls 20, 120, 220, 320, 420, may be adapted to expand radially outwardly in order to absorb some of the pressurization. This expansion can increase the amount of pressurization that the container can withstand. This can be advantageous, because the more the container is pressurized, the longer it will take for pressure loss (e.g., due to vapor transmission through the sidewall) to reduce the strengthening effects of the pressurization. The increased pressurization also increases the stacking strength of the container.


Referring to FIGS. 10-12, it has been found that containers including a vertical sidewall profile that is teardrop shaped or pendant shaped (at least in some vertical cross-sections) are well suited for the above-described radial-outward expansion. Referring to FIG. 4, other vertical sidewall profiles including a S-shaped or exaggerated S-shaped bend may be particularly suited for radial-outward expansion as well, although other configurations are possible.


Referring to FIGS. 13-14, it has also been found that containers having a sidewall that is fluted (at least prior to filling, capping, and activating the pressure panel) are well suited for the above-described radial-outward expansion. For example, the sidewall 420 shown in FIG. 13 can include a plurality of flutes 460 adapted to expand radially-outwardly under the pressure imparted by the pressure panel 422. In the exemplary embodiment shown, the flutes 460 extend substantially vertically (i.e., substantially parallel to the container's longitudinal axis A), however other orientations of the flutes 460 are possible. The exemplary embodiment shown includes ten flutes 460 (visible in the cross-sectional view of FIG. 14A), however, other numbers of flutes 460 are possible.



FIG. 14A is a cross-sectional view of the sidewall 420 prior to activating the pressure panel 422. As previously described, activating the pressure panel 422 creates a positive pressure within the container. This positive pressure can cause the sidewall 420 to expand radially-outwardly in response to the positive pressure, for example, by reducing or eliminating the redundant circumferential length contained in the flutes 460. FIG. 14B is a cross-sectional view of the sidewall 420 after the pressure panel has been activated. As can be seen, the redundant circumferential length previously contained in the flutes 460 has been substantially eliminated, and the sidewall 420 has bulged outward to assume a substantially circular cross-section.


One of ordinary skill in the art will know that the above-described sidewall shapes (e.g., teardrop, pendant, S-shaped, fluted) are not the only sidewall configurations that can be adapted to expand radially outwardly in order to absorb some of the pressurization created by the pressure panel. Rather, one of ordinary skill in the art will know from the present application that other shapes and configurations can alternatively be used, such as concertina and/or faceted configurations.


The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.

Claims
  • 1. A pressure reinforced plastic container having a longitudinal axis, comprising: a neck defining an open top, the neck including a finish adapted to receive a cap for closing the open top;a closed base oppositely disposed from the open top, the closed base comprising: an outer annular edge;a central cavity;a flexible annular pressure panel extending between the outer annular edge and the central cavity;a sidewall extending upward from the outer annular edge of the closed base to the neck, the closed base and the sidewall defining an interior volume for storing liquid contents;wherein the pressure panel is movable between an initial convex exterior position and an activated concave exterior position, wherein the pressure panel includes a first portion inclined outwardly at an angle of greater than 10 degrees relative to a plane orthogonal to the longitudinal axis when the pressure panel is in the initial position, wherein the pressure panel is in the initial position prior to filling the container with the liquid contents and is moved to the activated position after filling and sealing the container; and,wherein the pressure panel is adapted to receive an external force moving the pressure panel from the initial position to the activated position, such that when moving the pressure panel from the initial position to the activated position, the interior volume of the container is reduced and an increased pressure is created inside the container, and the increased pressure reinforces the sidewall.
  • 2. The plastic container of claim 1, wherein a headspace exists in the container after filling and sealing, and moving the pressure panel from the initial position to the activated position compresses the headspace.
  • 3. The plastic container of claim 1, wherein the sidewall defines a vertical profile that is approximately teardrop shaped or approximately pendant shaped.
  • 4. The plastic container of claim 1, wherein the sidewall defines a generally circular cross-section.
  • 5. The plastic container of claim 1, wherein the sidewall includes a grip portion.
  • 6. The plastic container of claim 1, wherein the pressure panel extends outward from the container when in the initial position, and the pressure panel extends inward into the interior volume of the container when in the activated position.
  • 7. The plastic container of claim 1, wherein the pressure panel is located in the base.
  • 8. The plastic container of claim 1, wherein the liquid contents are hot filled.
  • 9. The plastic container of claim 1, wherein a second portion of the pressure panel is inclined outwardly at an angle, relative to the plane orthogonal to the longitudinal axis, at least 10 degrees less than that of the first portion of the pressure panel when the pressure panel is in the initial position.
  • 10. The plastic container of claim 1, wherein the pressure panel is adapted to reduce a predetermined amount of volume inside the container when in the activated position.
  • 11. The plastic container of claim 10, wherein the predetermined amount of volume reduction is calculated based at least partially on strength characteristics of the sidewall.
  • 12. The plastic container of claim 10, wherein the predetermined amount of volume reduction is calculated based at least partially on coefficient of thermal expansion characteristics of the liquid contents.
  • 13. The plastic container of claim 10, wherein the predetermined amount of volume reduction is calculated based at least partially on the rate of vapor transmission through the sidewall.
  • 14. The plastic container of claim 1, wherein the first portion of the pressure panel is inclined outwardly at an angle of greater than 10 degrees and less than 45 degrees relative to a plane orthogonal to the longitudinal axis when the pressure panel is in the initial position.
  • 15. The plastic container of claim 14, wherein the first portion of the pressure panel is inclined outwardly at an angle of between 30 degrees and 45 degrees relative to a plane orthogonal to the longitudinal axis when the pressure panel is in the initial position.
  • 16. The plastic container of claim 15, wherein the first portion of the pressure panel is inclined outwardly at an angle of approximately 35 degrees relative to a plane orthogonal to the longitudinal axis when the pressure panel is in the initial position.
  • 17. The plastic container according to claim 1, wherein the increased pressure is a positive pressure relative to the pressure inside the container prior to sealing.
  • 18. The plastic container of claim 17, wherein the pressure panel is sized and shaped to reduce the internal volume of the container by an amount that creates a predetermined level of the positive pressure in the container to reinforce the sidewall and provide desired strength characteristics, and wherein the container is configured to maintain the positive pressure in the container at or near the predetermined level until the container is opened.
  • 19. The plastic container of claim 17, wherein the positive pressure has moved the sidewall radially outward from an initial position to a radially further outward reinforced position.
  • 20. The plastic container of claim 17, wherein the sidewall is adapted to expand radially outwardly due to the positive pressure.
  • 21. The plastic container of claim 17, wherein a substantial portion of the sidewall is free of structural reinforcement elements, and the positive pressure is sufficient to support the sidewall.
  • 22. The plastic container of claim 17, wherein the positive pressure inside the container is maintained for at least 60 days after the pressure panel is moved to the activated position.
  • 23. The plastic container of claim 17, wherein the sidewall comprises a plurality of flutes adapted to expand radially outwardly due to the positive pressure.
  • 24. The plastic container of claim 23, wherein the plurality of flutes extend substantially parallel to the longitudinal axis.
Priority Claims (1)
Number Date Country Kind
521694 Sep 2002 NZ national
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. patent application Ser. No. 10/529,198, filed on Dec. 15, 2005, which is the U.S. National Phase of International Application No. PCT/NZ2003/000220, filed on Sep. 30, 2003, which claims priority of New Zealand Application No. 521694, filed on Sep. 30, 2002. The present application is also a continuation-in-part of U.S. patent application Ser. No. 10/566,294, filed on Jan. 27, 2006, which is the U.S. National Phase of International Application No. PCT/US2004/024581, filed on Jul. 30, 2004, which claims priority of U.S. Provisional Patent Application No. 60/551,771, filed Mar. 11, 2004, and U.S. Provisional Patent Application No. 60/491,179, filed Jul. 30, 2003. The entire contents of the aforementioned applications are incorporated herein by reference.

US Referenced Citations (207)
Number Name Date Kind
1499239 Malmquist Jun 1924 A
D110624 Mekeel, Jr. Jul 1938 S
2124959 Vogel Jul 1938 A
2378324 Ray et al. Jun 1945 A
2880902 Owsen Apr 1959 A
2960248 Kuhlman Nov 1960 A
2971671 Shakman Feb 1961 A
2982440 Harrison May 1961 A
3043461 Glassco Jul 1962 A
3081002 Tauschinski et al. Mar 1963 A
3174655 Hurschman Mar 1965 A
3301293 Santelli Jan 1967 A
3397724 Bolen et al. Aug 1968 A
3409167 Blanchard Nov 1968 A
3426939 Young Feb 1969 A
3468443 Marcus Sep 1969 A
3483908 Donovan Dec 1969 A
3485355 Stewart Dec 1969 A
3693828 Kneusel et al. Sep 1972 A
3704140 Petit et al. Nov 1972 A
3727783 Carmichael Apr 1973 A
3819789 Parker Jun 1974 A
3904069 Toukmanian Sep 1975 A
3918920 Barber Nov 1975 A
3935955 Das Feb 1976 A
3941237 MacGregor Mar 1976 A
3942673 Lyu et al. Mar 1976 A
3949033 Uhlig Apr 1976 A
4036926 Chang Jul 1977 A
4117062 Uhlig Sep 1978 A
4125632 Vosti et al. Nov 1978 A
4134510 Chang Jan 1979 A
4170622 Uhlig et al. Oct 1979 A
4174782 Obsomer Nov 1979 A
4219137 Hutchens Aug 1980 A
4231483 Dechenne et al. Nov 1980 A
4247012 Alberghini Jan 1981 A
4301933 Yoshino et al. Nov 1981 A
4318489 Snyder et al. Mar 1982 A
4318882 Agrawal et al. Mar 1982 A
4321483 Dugan Mar 1982 A
4338765 Ohmori et al. Jul 1982 A
4355728 Ota et al. Oct 1982 A
4377191 Yamaguchi Mar 1983 A
4378328 Przytulla Mar 1983 A
4381061 Cerny et al. Apr 1983 A
D269158 Gaunt et al. May 1983 S
4386701 Galer Jun 1983 A
4412866 Schoenrock et al. Nov 1983 A
4436216 Chang Mar 1984 A
4444308 MacEwen Apr 1984 A
4450878 Takada et al. May 1984 A
4465199 Aoki Aug 1984 A
4497855 Agrawal et al. Feb 1985 A
4542029 Caner et al. Sep 1985 A
4610366 Estes et al. Sep 1986 A
4628669 Herron et al. Dec 1986 A
4642968 McHenry et al. Feb 1987 A
4645078 Reyner Feb 1987 A
4667454 McHenry et al. May 1987 A
4684025 Copland et al. Aug 1987 A
4685273 Caner et al. Aug 1987 A
D292378 Brandt et al. Oct 1987 S
4749092 Sugiura et al. Jun 1988 A
4773458 Touzani Sep 1988 A
4785949 Krishnakumar et al. Nov 1988 A
4785950 Miller et al. Nov 1988 A
4807424 Robinson et al. Feb 1989 A
4813556 Lawrence Mar 1989 A
4831050 Bettle May 1989 A
4836398 Leftault, Jr. et al. Jun 1989 A
4850493 Howard, Jr. Jul 1989 A
4850494 Howard, Jr. Jul 1989 A
4865206 Behm et al. Sep 1989 A
4867323 Powers Sep 1989 A
4880129 McHenry et al. Nov 1989 A
4887730 Touzani Dec 1989 A
4892205 Powers et al. Jan 1990 A
4896205 Weber Jan 1990 A
4921147 Poirier May 1990 A
4967538 Leftault et al. Nov 1990 A
4976538 Ake Dec 1990 A
4978015 Walker Dec 1990 A
4997692 Yoshino Mar 1991 A
5004109 Bartley Apr 1991 A
5005716 Eberle Apr 1991 A
5014868 Wittig et al. May 1991 A
5024340 Alberghini et al. Jun 1991 A
5060453 Alberghini et al. Oct 1991 A
5067622 Garver et al. Nov 1991 A
5090180 Sorensen Feb 1992 A
5092474 Leigner Mar 1992 A
5133468 Brunson et al. Jul 1992 A
5141121 Brown et al. Aug 1992 A
5178290 Ota et al. Jan 1993 A
5199587 Ota et al. Apr 1993 A
5199588 Hayashi Apr 1993 A
5201438 Norwood et al. Apr 1993 A
5217737 Gygax et al. Jun 1993 A
5234126 Jonas et al. Aug 1993 A
5244106 Takacs Sep 1993 A
5251424 Zenger et al. Oct 1993 A
5255889 Collette et al. Oct 1993 A
5261544 Weaver, Jr. Nov 1993 A
5279433 Krishnakumar et al. Jan 1994 A
5281387 Collette et al. Jan 1994 A
5333761 Davis et al. Aug 1994 A
5341946 Vailliencourt et al. Aug 1994 A
5392937 Prevot Feb 1995 A
5411699 Collette et al. May 1995 A
5454481 Hsu Oct 1995 A
5472105 Krishnakumar et al. Dec 1995 A
5472181 Lowell Dec 1995 A
RE35140 Powers, Jr. Jan 1996 E
5484052 Pawloski et al. Jan 1996 A
5503283 Semersky Apr 1996 A
5598941 Semersky Feb 1997 A
5632397 Fandeux et al. May 1997 A
5642826 Melrose Jul 1997 A
5672730 Cottman Sep 1997 A
5690244 Darr Nov 1997 A
5704504 Bueno Jan 1998 A
5713480 Petre et al. Feb 1998 A
5730314 Wiemann et al. Mar 1998 A
5730914 Ruppmann, Sr. Mar 1998 A
5737827 Kuse et al. Apr 1998 A
5758802 Wallays Jun 1998 A
5762221 Tobias et al. Jun 1998 A
5780130 Hansen et al. Jul 1998 A
5785197 Slat Jul 1998 A
5829614 Collette et al. Nov 1998 A
5858300 Shimizu et al. Jan 1999 A
5860556 Robbins, III Jan 1999 A
5887739 Prevot et al. Mar 1999 A
5888598 Brewster et al. Mar 1999 A
5897090 Smith et al. Apr 1999 A
5906286 Matsuno et al. May 1999 A
5908128 Krishnakumar et al. Jun 1999 A
D415030 Searle et al. Oct 1999 S
5976653 Collette et al. Nov 1999 A
RE36639 Okhai Apr 2000 E
6065624 Steinke May 2000 A
6077554 Wiemann et al. Jun 2000 A
6105815 Mazda et al. Aug 2000 A
6213325 Cheng et al. Apr 2001 B1
6228317 Smith et al. May 2001 B1
6230912 Rashid May 2001 B1
6277321 Vailliencourt et al. Aug 2001 B1
6298638 Bettle Oct 2001 B1
6375025 Mooney Apr 2002 B1
6390316 Mooney May 2002 B1
6413466 Boyd et al. Jul 2002 B1
6439413 Prevot Aug 2002 B1
6467639 Mooney Oct 2002 B2
6485669 Boyd et al. Nov 2002 B1
6502369 Andison et al. Jan 2003 B1
6514451 Boyd et al. Feb 2003 B1
6585124 Boyd et al. Jul 2003 B2
6595380 Silvers Jul 2003 B2
6612451 Tobias et al. Sep 2003 B2
6662960 Hong et al. Dec 2003 B2
6749780 Tobias Jun 2004 B2
6769561 Futral et al. Aug 2004 B2
6779673 Melrose et al. Aug 2004 B2
6923334 Melrose et al. Aug 2005 B2
6942116 Lisch et al. Sep 2005 B2
6983858 Slat et al. Jan 2006 B2
7051889 Boukobza May 2006 B2
7077279 Melrose Jul 2006 B2
7137520 Melrose Nov 2006 B1
7150372 Lisch et al. Dec 2006 B2
7159374 Abercrombie, III et al. Jan 2007 B2
7520400 Young et al. Apr 2009 B2
20010035391 Young et al. Nov 2001 A1
20020074336 Silvers Jun 2002 A1
20020096486 Bourque et al. Jul 2002 A1
20020153343 Tobias et al. Oct 2002 A1
20020158038 Heisel et al. Oct 2002 A1
20030015491 Melrose et al. Jan 2003 A1
20030186006 Schmidt et al. Oct 2003 A1
20030196926 Tobias et al. Oct 2003 A1
20030217947 Ishikawa et al. Nov 2003 A1
20040016716 Melrose et al. Jan 2004 A1
20040028910 Yamamoto et al. Feb 2004 A1
20040074864 Melrose et al. Apr 2004 A1
20040149677 Slat et al. Aug 2004 A1
20040173565 Semersky et al. Sep 2004 A1
20040173656 Seong Sep 2004 A1
20040211746 Trude Oct 2004 A1
20040232103 Lisch et al. Nov 2004 A1
20060006133 Lisch et al. Jan 2006 A1
20060138074 Melrose Jun 2006 A1
20060231985 Kelley Oct 2006 A1
20060243698 Melrose Nov 2006 A1
20060255005 Melrose et al. Nov 2006 A1
20060261031 Melrose Nov 2006 A1
20070017892 Melrose Jan 2007 A1
20070045312 Abercrombie, III et al. Mar 2007 A1
20070051073 Kelley et al. Mar 2007 A1
20070084821 Bysick et al. Apr 2007 A1
20070125743 Pritchett et al. Jun 2007 A1
20070181403 Sheets et al. Aug 2007 A1
20070199915 Denner et al. Aug 2007 A1
20070199916 Denner et al. Aug 2007 A1
20070215571 Trude Sep 2007 A1
20070235905 Trude et al. Oct 2007 A1
20080047964 Denner et al. Feb 2008 A1
Foreign Referenced Citations (58)
Number Date Country
2077717 Mar 1993 CA
17 61 753 Jan 1972 DE
21 02 319 Aug 1972 DE
2102319 Aug 1972 DE
32 15 866 Nov 1983 DE
0 521 642 Jan 1993 EP
0 666 222 Aug 1995 EP
0 957 030 Nov 1999 EP
1 063 076 Dec 2000 EP
1571499 Jun 1969 FR
2607109 May 1988 FR
781103 Aug 1957 GB
1113988 May 1968 GB
2050919 Jan 1981 GB
2 372 977 Sep 2002 GB
49-28628 Jul 1974 JP
56-72730 Jun 1981 JP
55-114717 Feb 1982 JP
63-189224 Aug 1988 JP
64-009146 Jan 1989 JP
03-043342 Feb 1991 JP
03-076625 Apr 1991 JP
05-193694 Aug 1993 JP
06-336238 Dec 1994 JP
07-300121 Nov 1995 JP
8053115 Feb 1996 JP
08-253220 Oct 1996 JP
09-039934 Feb 1997 JP
09-110045 Apr 1997 JP
10-167226 Jun 1998 JP
10-181734 Jul 1998 JP
10-230919 Sep 1998 JP
2000-168756 Jun 2000 JP
2000-229615 Aug 2000 JP
2002-127237 May 2002 JP
2006-501109 Jan 2006 JP
240448 Jun 1995 NZ
296014 Oct 1998 NZ
335565 Oct 1999 NZ
506684 Aug 2000 NZ
512423 Jun 2001 NZ
521694 Oct 2003 NZ
WO 9309031 May 1993 WO
WO 9312975 Jul 1993 WO
WO 9405555 Mar 1994 WO
WO 9714617 Apr 1997 WO
WO 9734808 Sep 1997 WO
WO 9921770 May 1999 WO
WO 0140081 Dec 1999 WO
WO 0051895 Sep 2000 WO
WO 0202418 Jan 2002 WO
WO 0218213 Mar 2002 WO
WO 02085755 Oct 2002 WO
WO 2004028910 Apr 2004 WO
WO 2004106175 Dec 2004 WO
WO 2004106176 Dec 2004 WO
WO 2005012091 Feb 2005 WO
WO 2007127337 Nov 2007 WO
Non-Patent Literature Citations (10)
Entry
IPRP for PCT/NZ03/00220, completed Jan. 11, 2005.
IPRP with Written Opinion for PCT/US2004/024581, Jan. 30, 2006.
IPRP with Written Opinion for PCT/US2007/010182, Oct. 28, 2008.
ISR for PCT/NZ03/00220, mailed Nov. 27, 2003.
ISR for PCT/US2004/024581, Jul. 25, 2005.
ISR for PCT/US2007/010182, Oct. 19, 2007.
State Intellectual Property Office of People's Republic of China Notification of the First Office Action, dated Mar. 23, 2010, issued in connection with counterpart Chinese Patent Application No. 200780022545.0.
Notice of Rejection of Japanese Patent Application No. 2002-523347, dated May 24, 2011.
Communication from the European Patent Office, dated Dec. 8, 2011, issued in connection with counterpart European Patent Application No. 07 794 381.9.
Office Action for European Application No. 07 794 381.9 dated Nov. 21, 2012.
Related Publications (1)
Number Date Country
20060255005 A1 Nov 2006 US
Provisional Applications (2)
Number Date Country
60491179 Jul 2003 US
60551771 Mar 2004 US
Continuation in Parts (3)
Number Date Country
Parent 10529198 US
Child 11413124 US
Parent 11413124 US
Child 11413124 US
Parent 10566294 US
Child 11413124 US