The present invention relates to pressure release mechanisms; and more particularly, to such mechanisms for use with pressurized gas cartridges.
Pressurized gas cartridges are sometimes used as a source of relatively high pressure gas. For example, commonly available CO2 cartridges have been used to provide pressurized gas to a dispensing device for viscous products. Exemplary viscous products include adhesives, caulks and sealants that are sold in product cartridges. The product cartridges typically have a cylindrical wall of cardboard or plastic and a movable piston. The piston is pushed by pneumatic pressure so that product is dispensed from the product cartridge through a dispensing orifice. Such dispensing devices are subject to use under a wide variety of environmental conditions.
In devices that use pressurized gas cartridges as a source of relatively high pressure gas, the gas cartridge is sealed to an inlet to provide fluid communication between the gas cartridge and the inlet. Thus, the relatively high pressure gas is provided to the inlet. As the temperature of the gas cartridge increases, the pressure of the gas within the cartridge can also increase meaningfully. In cases where the temperature increases significantly, the pressure inside the cartridge might be able to increase to the point that it is capable of damaging the device to which the gas cartridge is sealed.
In accordance with one aspect of the present invention, a pressure release connection for a pneumatic device adapted to be driven by a pressurized gas cartridge is provided. The pressure release connection includes a pressurized gas inlet adapted to receive pressurized gas from the pressurized gas cartridge. A variable compression member is adapted, under normal operating temperature conditions, to provide a normal compressive force between the pressurized gas cartridge and the inlet to effectively seal an outlet of the pressurized gas cartridge to the inlet. The variable compression member is also adapted, under heightened temperature conditions, to provide a reduced compressive force between the outlet of the pressurized gas cartridge and the inlet to allow pressurized gas to escape between the pressurized gas cartridge and the inlet.
In accordance with another aspect of the present invention, a pneumatic dispensing device for dispensing a viscous product is provided. The pneumatic dispensing device is adapted to be driven by a pressurized gas cartridge and includes a gas enclosure adapted to generate a dispensing force on the viscous product from pressurized gas located therein. A pressurized gas inlet is adapted to receive pressurized gas from the pressurized gas cartridge. A seal member is associated with the pressurized gas inlet. A temperature sensitive member is adapted to be associated with the pressurized gas cartridge and has a normal height when subjected to normal operating temperatures that is adapted to force the pressurized gas cartridge against the seal member to effectively seal the pressurized gas cartridge to the inlet. The temperature sensitive member has a reduced height when subjected to heightened temperatures that is adapted to allow the pressurized gas cartridge to move away from the seal member and permit pressurized gas to escape between the pressurized gas inlet and the pressurized gas cartridge. The pressurized gas inlet is in fluid communication with the gas enclosure to enable pressurized gas delivered through the inlet to enter the gas enclosure to cause dispensing of the viscous product from the dispensing device.
In accordance with yet another aspect of the present invention, a pneumatic dispensing device adapted to dispense a viscous product from a viscous product cartridge is provided. The dispensing device is also adapted to be driven by a pressurized gas cartridge. A product cartridge housing component is adapted to retain the viscous product cartridge and to cooperate with the viscous product cartridge to form a gas enclosure separated from a product enclosure by a movable wall. A pressurized gas cartridge housing component has an inlet and a variable compression member opposed from the inlet. The variable compression member is adapted to provide a normal compressive force on the pressurized gas cartridge sufficient to effectively seal the pressurized gas cartridge to the inlet during normal operating temperature conditions. The variable compression member is also adapted to provide a reduced compressive force on the pressurized gas cartridge to permit the release of pressurized gas between the pressurized gas cartridge and the inlet during heightened temperature conditions. A fluid passage provides fluid communication between the inlet and the gas enclosure. Pressurized gas entering the gas enclosure causes a volume of the gas enclosure to expand and a volume of the product enclosure to be reduced to thereby dispense product from the dispensing device.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. For example, although the device is described herein with respect to commonly available CO2 cartridges, alternative sources of high pressure gas may be used.
As used herein, “pressurized gas cartridge” means a container that is capable of housing a material that can be dispensed from the container in the form of a pressurized gas. Thus, it is possible that the material inside the container is, at least partially, in a form that is not gaseous. Similarly, the phrase “product cartridge” as used herein, means a container capable of housing a product for shipping and/or storage and for dispensing. Thus, the term “cartridge” does not, in itself, require any specific structural configuration.
Referring to
Specifically, the inlet 20 of the fluid passage 16 includes a resilient gasket seal member 24. In addition, the inlet 20 may include a piercing member (not shown) to pierce an opening in the gas cartridge 22 upon sealing to the inlet 20. The gas cartridge housing component 15 includes a screw on cap 26 associated with the gas cartridge 22. The cap 26 includes a seat 28 that accommodates the end of the CO2 cartridge 22. Associated with the CO2 cartridge seat 28 is a temperature sensitive member 38. Under normal operating temperatures the temperature sensitive member 38 has a normal height. When subjected to heightened operating temperatures, the temperature sensitive member 38 has a reduced height.
Under normal operating temperatures, as the cap 26 is threaded onto the remainder of the gas cartridge housing component 15, the cap 26 engages a distal end of the gas cartridge 22 in the seat 28. Continuing to thread the cap 26 onto the remainder of the gas cartridge housing component 15 pushes the gas cartridge 22 into sealing engagement with the inlet 20. In addition, threading the cap 26 onto the remainder of the gas cartridge housing component 15 causes any piercing member to pierce the gas cartridge 22. In any event, sealed fluid communication is provided between the interior of the gas cartridge 22 and the fluid passage 16. The resilient gasket seal member 24 is sufficiently compressed between the inlet 20 and the CO2 cartridge 22 as to effectively seal the pressurized gas cartridge 22 to the inlet 20.
Referring to
Referring to
The sloped annular wall 40 of each bimetallic component 39 of the temperature sensitive member 38 extends in a direction that has both an axial directional component and a radial directional component. The axial component direction corresponds to the height dimension of the bimetallic component 39 (as seen in the drawings). The radial component corresponds to a direction in a plane that is perpendicular to the axial component. Thus, the use of the terms “axial” and “radial” is not limited to circular bimetallic components 39. The wall 40 extends at an angle with respect to the direction of the compressive force being applied to cause sealing between the pressurized gas cartridge 22 and the inlet 20. Preferably, however, the wall is defined by a cross-sectional shape (for example, as seen in
As indicated above, under normal operating temperatures the height of the temperature sensitive member 38 is such that when the cap 26 is threaded onto the rest of the housing 14 the cap 26 pushes the cartridge 22 into effective sealing engagement with the inlet 20. Thus, the normal height Hn of each of the bimetallic components 39 of the temperature sensitive member 38 is sufficient to generate a compressive force that effectively seals the CO2 cartridge 22 to the inlet 20. As the temperature increases to a heightened level, the height of the temperature sensitive member 38 decreases. If the temperature increases sufficiently, the reduction in height causes the compressive force on the seal member 24 between the CO2 cartridge and the inlet 20 to decrease to a point that gas can escape at this pressure release connection. Thus, the temperature sensitive member 38 operates as a variable compression member.
Returning now to the dispensing device of
At one end of such cylindrical tubular product cartridge 12 is a dispensing orifice 52. The dispensing orifice 52 may be provided, for example, by cutting the end of a nozzle (not shown) that is typically provided on many such commercially available viscous product cartridges 12. In addition, it may be necessary to rupture an internal seal (not shown) at the base of the nozzle that seals the dispensing orifice 52 and is often also included in such commercially available product cartridges 12. At the opposite end of the product cartridge 12 is a piston 54 that seals the end of the tube 12. The piston 54 operates as a movable wall that is capable of forcing product from a product enclosure 56 through the dispensing orifice 52 as the piston 54 moves toward the dispensing orifice 52.
As indicated above, the upper portion of the housing 14 operates as a product cartridge housing component 48. The product cartridge housing component 48 is adapted to cooperate with the viscous product cartridge 12 to form the gas enclosure 18 separated from the product enclosure 56 by the movable piston 54. In this embodiment, the product cartridge housing component 48 of the housing 14 is sealed to the cylindrical outer wall 50 of the product cartridge 12 using an O-ring 58 to form the gas enclosure 18 between the housing 14 and the product cartridge 12. The piston 54 or movable wall separates the gas enclosure 18 from the product enclosure 56 formed inside the product cartridge 12.
Although this embodiment has a relatively rigid cylindrical wall 50 and a movable piston 54, an alternative product cartridge (not shown) is made of flexible thin-film packaging material. The corresponding product cartridge housing component is modified to be sealed around the flexible side walls in this alternative embodiment providing a gas enclosure that surrounds the flexible side walls. Thus, the side walls can move toward each other under external pressure within the gas enclosure to force product through the dispensing orifice. Accordingly, the flexible thin-film side walls provide the movable walls in this alternative embodiment.
Returning to the embodiment of
The nozzle housing component 60 includes a dispensing passage 64 which is selectively opened and closed by a valve body 68. A spring 70 biases the valve body 68 downwardly into a closed position in which the dispensing passage 64 of the nozzle 60 is sealed as seen in
In an alternative embodiment (not seen), the nozzle, including the valve body and dispensing passage, may be integrally provided as part of the product cartridge, rather than as part of the housing. This configuration eliminates the need to seal the dispensing orifice of the product cartridge and the dispensing passage of the dispenser housing together. In contrast, the preferred embodiment described above enables re-use of the nozzle and valve assembly with multiple disposable product cartridges.
Returning to the embodiment of
A gas flow control valve 78 is also located along the fluid passage 16. The gas flow control valve 78 is biased to a closed position by a spring 80. The gas flow control valve 78 is manually actuated by the trigger 72 which moves the valve 78 to an open position as seen in
As indicated above, the trigger 72 is also connected to the nozzle valve body 68 to open the valve upon manual actuation. Thus, in this embodiment, the valve 68 of the dispensing passage 64 and the gas flow valve 78 are simultaneously opened. As the piston 54 begins to move, the volume of the gas enclosure 18 expands reducing the volume of the product enclosure 56 and dispensing product through the dispensing orifice 52 and the dispensing passage 64. Upon release of the trigger 72, both the dispensing valve 68 and the gas flow control valve 78 move to their closed positions as seen in
Two additional valve mechanisms are located within the fluid passage 16 in this embodiment. One is a pressure release valve 82 that is additionally associated with the gas enclosure 18 and is biased to a closed position by a spring 84. The pressure release valve 82 may be manually moved to an open position to permit the release of gas pressure from the gas enclosure 18. This release of pressure can, for example, facilitate the replacement of the viscous product cartridge 12. A maximum pressure release valve 86 is also included in the fluid passage 16 that is designed to vent the CO2 gas from the gas enclosure 18 should the pressure therein exceed a maximum pressure level.
Operation of the dispensing device 10 described above involves locating a product cartridge 12 in the product cartridge retaining housing component 48. As described above, this creates a gas enclosure 18 separated from a product enclosure 56 by a moveable wall 54. In addition, operation of the dispensing device involves locating a CO2 cartridge 22 inside the gas cartridge housing component 15 of the housing 14. Thus, as described above, the interior of the CO2 cartridge 22 is located in sealed fluid communication with the fluid passage 16 by screwing on the cap 26.
Application of a product dispensing force is accomplished by manually actuating the trigger 72 which causes opening of both the nozzle valve 68 and gas flow control valve 78. Pressurized gas from the CO2 cartridge 22 flows through the fluid passage 16 and passes through the pressure regulator 76 where the pressure level of the gas is reduced to an operational pressure. This pressure is selected to affect a desirable dispensing rate without unnecessarily increasing the pressure. A preferred typical operational pressure is from about 20 psi to about 50 psi. An adjustment mechanism (not shown) for the pressure regulator 76 may additionally be provided to enable a user to adjust the operating pressure level for different products.
The pressurized gas flows past the open gas flow control valve 78 in the fluid passage 16 and into the gas enclosure 18 to dispense product as described above. Upon release of the trigger 72, the gas flow control valve 78 closes to cause the flow of gas from the CO2 cartridge 22 into the gas enclosure 18 to cease. In addition, the nozzle valve 68 closes which causes the flow of product through the dispensing passage 64 to cease. Thus, a relatively large amount of pressurized gas remains in the cartridge 22. When subjected to normal operating temperatures, the cartridge 22 is effectively sealed to the inlet 20 due to the force applied to the distal end of the gas cartridge 22 by the temperature sensitive component 38. Upon exposing the dispensing device 10 to elevated temperatures, however, the compressive force on the seal 24 between the inlet 20 and the pressurized gas cartridge 22 is reduced due to a reduction in the height of the temperature sensitive member 38 as described above. This reduction in height and related compressive force is preferably such that gas from the CO2 cartridge 22 is allowed to escape in a controlled manner. As used herein, the release of gas is “controlled” if it does not cause the CO2 cartridge to become completely dislodged from the inlet 20 and/or otherwise cause damage to the device 10.
Referring to
For example, the alternative bimetallic component 139 illustrated in
Only a small number of the many possible alternatives are described above. Many additional modifications and alternatives beyond those described above, may be envisioned by those skilled in the art. For example, a pair of bimetallic components may be joined together at their outer peripheries, rather than at their inner ends as illustrated in
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2818999 | Miller | Jan 1958 | A |
3138303 | Hoveland | Jun 1964 | A |
3308998 | Oppasser et al. | Mar 1967 | A |
3568892 | Burk | Mar 1971 | A |
3587930 | Schultz | Jun 1971 | A |
3640431 | Plumer | Feb 1972 | A |
RE28120 | Plumer | Aug 1974 | E |
3877610 | Dickey | Apr 1975 | A |
3980209 | Collar | Sep 1976 | A |
3983947 | Wills et al. | Oct 1976 | A |
3987939 | Pedone, Jr. et al. | Oct 1976 | A |
4215802 | Ornsteen | Aug 1980 | A |
4284213 | Lee | Aug 1981 | A |
4299336 | Studer | Nov 1981 | A |
4340154 | VanManen | Jul 1982 | A |
4349028 | Green | Sep 1982 | A |
4376498 | Davis, Jr. | Mar 1983 | A |
4382530 | Calisto | May 1983 | A |
4386717 | Koob | Jun 1983 | A |
4426022 | Lang et al. | Jan 1984 | A |
4441629 | Mackal | Apr 1984 | A |
4453651 | Braithwaite et al. | Jun 1984 | A |
4461454 | Vadnais | Jul 1984 | A |
4637531 | Olsson | Jan 1987 | A |
4685595 | Segatz | Aug 1987 | A |
4844301 | Juillet | Jul 1989 | A |
D303914 | Hinden et al. | Oct 1989 | S |
4925061 | Jeromson, Jr. et al. | May 1990 | A |
4957225 | Childers | Sep 1990 | A |
4972910 | Fujiki | Nov 1990 | A |
4986444 | Corso | Jan 1991 | A |
5058769 | Kurtz | Oct 1991 | A |
D321309 | Myers | Nov 1991 | S |
5104013 | Hawley | Apr 1992 | A |
5181636 | Anderson et al. | Jan 1993 | A |
5203507 | Matthews | Apr 1993 | A |
D342654 | Jens | Dec 1993 | S |
D343103 | Bunce | Jan 1994 | S |
5297697 | Boring | Mar 1994 | A |
5361941 | Parekh et al. | Nov 1994 | A |
D357392 | Kimpel et al. | Apr 1995 | S |
5492249 | Beach | Feb 1996 | A |
5514135 | Earle | May 1996 | A |
5535925 | Hinden et al. | Jul 1996 | A |
5556009 | Motzko | Sep 1996 | A |
5573148 | Poole et al. | Nov 1996 | A |
5595327 | Dentler et al. | Jan 1997 | A |
5833099 | Boaz et al. | Nov 1998 | A |
5887765 | Broesamle | Mar 1999 | A |
6022504 | Boaz et al. | Feb 2000 | A |
6032830 | Brown | Mar 2000 | A |
6039223 | Damask | Mar 2000 | A |
6062428 | Callahan | May 2000 | A |
6488180 | Bayat | Dec 2002 | B1 |
6672489 | Huang | Jan 2004 | B1 |
6935541 | Campbell et al. | Aug 2005 | B1 |
20020108971 | Lafond | Aug 2002 | A1 |
20020145014 | Harris | Oct 2002 | A1 |
20040074927 | Lafond | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
2036423 | Mar 1971 | DE |
2944969 | May 1980 | DE |
3409724 | Sep 1985 | DE |
3526141 | Feb 1986 | DE |
3526142 | Feb 1986 | DE |
3920694 | Jan 1991 | DE |
9419733.4 | Jun 1995 | DE |
0290259 | Nov 1988 | EP |
2162902 | Feb 1986 | GB |
2162903 | Feb 1986 | GB |
02-144168 | Jun 1980 | JP |
56-089865 | Jul 1981 | JP |
62-011571 | Jan 1987 | JP |
64-038164 | Feb 1989 | JP |
06-000428 | Jan 1994 | JP |
06-099122 | Apr 1994 | JP |
09-024981 | Jan 1997 | JP |
2001-315864 | Nov 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20050230433 A1 | Oct 2005 | US |