The present invention relates to a pressure release mechanism for a battery pack in which a plurality of batteries are accommodated in a pack casing and particularly relates to the pressure release mechanism for the battery pack having a relatively large capacity which can serve as a (motive) power source of an electric vehicle.
For example, a battery pack used in an electric vehicle is structured in a state in which a pack casing is substantially tightly sealed in order to prevent an invasion of rainwater, dust, or so forth into an inside of the pack casing. In other words, in order to avoid a pressure variation within the pack casing involved in a charge-discharge, a temperature variation, or so forth, the inside and an outside of the pack casing is slightly communicated with each other through a, so-called, breathing hole or so forth which allows an entrance and exit of a relatively small quantity of air but basically the pack casing is in a tightly sealed state.
On the other hand, in a case where a large quantity of gas is abruptly generated in the inside of the battery pack due to an internal short-circuit of any one or more of batteries, it is necessary to allow a quick escape of the internal pressure of the battery pack. Patent document D1 and patent document D2 disclose kinds of pressure release valves in each of which an opening section is installed at a part of the battery pack and a lid member enclosing this opening section is eliminated when gas is generated. Patent document 1 discloses one of the pressure release valves in which the lid member enclosing a rectangular opening section is broken, deformed, or blown off in response to the pressure within the battery pack so that the opening section is released. Patent document 2 discloses the other of the pressure release valve in which the lid member is formed of a low melting point material and is melted due to heat of gas generated in the battery pack.
In the conventional pressure release valve type structures described above, the lid member enclosing the opening section is structured so as to be weak as compared with the battery pack itself. Thus, when gas is abruptly generated in the inside of the battery pack, the opening section is released due to a breakage of the lid member, a permanent deformation, a melting elimination, or so forth. After gas in the inside of the battery pack is approximately exhausted and the pressure within the inside of the battery pack is reduced, the opening section remains in the released state. Hence, an external air, viz., oxygen easily flows into the inside of the battery pack and a possibility that an abrupt oxidization reaction is developed in the inside of the battery pack occurs. It should be noted that a third embodiment of patent document 2 discloses the pressure release valve in which a reed valve type backflow prevention valve (check valve). However, this backflow prevention valve (check valve) serves to guide a flow of a high temperature gas to the lid member made of a low melting point material to the lid member and the lid member itself is melted at a time of the gas generation. After all, the opening section remains in the released state.
In addition, since, in the structures of patent documents 1, 2, a part of the battery pack, viz., the lid member enclosing the opening section provides a position at which a strength is low, such another problem that a countermeasure against stepping (flying) stones is needed newly and easily occurs.
Patent document 1: A Japanese Patent Application First (Laid-open) Publication No. 2014-041841;
Patent document 2;
A Japanese Patent Application First (Laid-open) Publication No. 2014-107178.
A pressure release mechanism according to the present invention, for a battery pack substantially tightly sealed and into which a plurality of batteries are accommodated, comprising:
an opening section formed to open a wall of a pack casing to communicate an inner space of the pack casing with an outer space of the pack casing; and
a plate-like member arranged along an outer side surface of the pack casing or an inner side surface of the pack casing to enclose the opening section and locally fixed onto the wall at fixture sections of two locations mutually opposed against each other across the opening section.
In the pressure release mechanism according to the present invention, the pressure release is, basically, achieved utilizing an elastic deformation of the pack casing itself due to a pressure rise in an inside of the pack casing during a generation of gas. That is, when the pressure in the inside of the pack casing is raised in association with a generation of gas, the pack casing tries to expand by itself and a part of wall of the pack casing surrounding the opening section is under a bending deformation. Whereas, since the plate-like member overlapped on the opening section is locally fixed to the wall at two locations across the opening section, no deformation which follows the pack casing occurs. Consequently, a deformation quantity of the pack casing, viz., a gap having a magnitude which accords with an internal pressure of the pack casing is generated and the release of pressure through the opening section (in other words, an exhaust (discharge) of gas) is carried out via this gap.
When gas within the pack casing is mostly exhausted (discharged) and the pressure within the pack casing is reduced, the pack casing which has expanded tries to again return to an initial shape and the bending deformation of the wall of the pack casing surrounding the opening section becomes small. Therefore, the gap between the wall of the pack casing and the plate-like member becomes again small so that a passage area communicating an inside of the pack casing and an outside thereof is reduced. Ideally, the release of pressure is carried out within a range of the elastic deformation of the pack casing and the deformation of the wall surrounding the opening section is returned to 0 and a relationship between the opening section and the plate-like member is returned to an initial state.
Hence, after gas in the inside of the pack casing is mostly exhausted (discharged), the pack casing is again returned to the state in which the pack casing is substantially tightly sealed and the inside of the pack casing is slightly held in a very slight positive pressure state. Thus, a flow in of external air viz., oxygen is suppressed.
In this way, according to the present invention, a substantial passage area of the opening section can be obtained in a form which accords with the pressure in the inside of the pack casing in an extremely simple structure such that the plate-like member is overlapped on the opening section of the pack casing. Thus, a quick release of the internal pressure and during the generation of gas and a subsequent suppression of the flow-in of oxygen can be achieved. In addition, since a function such as a rupture (breaking) or so forth by a pressure is not necessary for the plate-like member covering the opening section, it is possible to maintain the same strength as the other part of the pack casing against stepping (flying) stones or so forth.
Preferred embodiments according to the present invention will, hereinafter, be described in details on a basis of drawings.
In this embodiment, respective batteries 3 are constituted as battery modules in which a plurality of (for example, four) flat lithium-ion cells sealed with laminate films as exterior bodies are piled up and accommodated within box shaped metal casings. A plurality of batteries 3, each having a flat rectangular parallelepiped shape, are arranged vertically in parallel to one another at one end section of an elongate direction (Y direction shown in
As will be appreciated from
A pressure release mechanism 11 according to the present invention can be installed at an arbitrary position of pack casing 2. However, in this embodiment, pressure release mechanism 11 as will be described later is arranged at a high ceiling section 5H on which a bending deformation appears relatively largely along a forward-and-backward direction (Y direction in
Gap adjustment plate 13 is, for example, made of a suitable plate-thickness steel plate and is of a flat plate shape in a substantially square whose corner sections are rounded. it is desirable for gap adjustment plate 12 not to be deformed due to the internal pressure of pack casing 2. For example, a steel plate having a thickness thicker than the plate thickness of a material of pack casing upper 5 is, for example, used for this gap adjustment plate. Gap adjustment plate 13 is formed in the substantially square shape in
As a direction of fixation through above-described fixtures 14, it is desirable for a straight line L connecting pair of fixtures 14 (refer to
In the above-described pressure release mechanism 11 in the first embodiment described above, at a normal (ordinary) usage time, gap adjustment plate 13 is placed in the proximity of an opening edge of opening section 12 and opening section 12 is substantially closed. Hence, an invasion of foreign matters through opening section 12 can be prevented. Especially, since gap adjustment plate 13 is constituted by the plate-like member, for example, the steel plate having a high rigidity, this plate is not a position whose rigidity is locally low and there is no possibility of damages due to stepping (flying) stones and so forth.
On the other hand,
When the (internal) pressure within pack casing 2 is raised, each part of pack casing 2 based on a pressure difference between the internal pressure and the atmospheric pressure receives a force from the inside of pack casing 2 and pack casing 2 of the substantially rectangular shape in cross section is under a bending deformation trying to expand toward the outside of the pack casing. At this time, wall 5A and gap adjustment plate 13 are not separated from each other in the direction (the direction along line L in
Hence, high-pressure gas in the inside of pack casing 2 is discharged (exhausted) externally from opening section 12 via gap ΔL as denoted by arrows in
It should be noted that, as the flexural rigidity in the direction along the cross section of
A magnitude (dimension) of above-described gap ΔL is varied in accordance with a degree of the flexural (bending) deformation, viz., the pressure in the inside (internal pressure) of pack casing 2 (strictly, a pressure difference from the external atmospheric pressure). When the internal pressure is very high, gap ΔL is largely developed, as shown in
The deformation of pack casing 2 is basically carried out in the range of the elastic deformation. In other words, a sufficient gap ΔL is developed in the range of the elastic deformation and high-temperature gas is discharged (exhausted).
Hence, when the pressure is reduced with gas within pack casing 2 mostly exhausted (discharged), wall 5A of pack casing 2 tries to return to an initial shape and gap adjustment plate 13 returns to a state in which gap adjustment plate 13 is placed in the proximity of opening section 12 as shown in
It should be noted that gap adjustment plate 13 is contacted on the inside of wall 5A, as shown in
Next, a second preferred embodiment of pressure release mechanism 11 on a basis of
In addition, gap adjustment plate 13 is attached onto wall 5A with pair of fixtures 14 arranged to be opposed against each other across opening section 12. It should be noted that, as described hereinabove, the suitable initial gap may be provided between the inside surface of wall 5A and gap adjustment plate 13.
It should, herein, be noted that, in the second embodiment, the direction of fixture of gap adjustment plate 13 with respect to pack casing 2 is 90o different from the above-described first embodiment. It is, specifically, desirable for the direction of line B-B in
In addition, the flexural rigidity of gap adjustment plate 13 is higher than the flexural rigidity of wall 5A of pack casing 2. Especially, as the flexural rigidity along line B-B connecting the pair of fixtures 14 at two positions, the flexural rigidity of gap adjustment plate 13 is higher than flexural rigidity of wall 5A.
In pressure release mechanism 11 in the second embodiment described above, during the normal (ordinary) usage, as shown in
On the other hand, when gas due to the internal short-circuit of any one or more cells is generated and the pressure within pack casing 2 is raised, each part of pack casing 2 receives the force from the inside of the pack casing on a basis of the pressure difference with respect to the atmospheric pressure and pack casing 2 performs the bending deformation, trying to expand toward the outside thereof, as shown in
Hence, high-pressure gas in the inside of pack casing 2 is exhausted (discharged) externally from opening section 12 through gap ΔL as shown in arrow marks shown in
Since, in the second embodiment, a magnitude of above-described gap ΔL is varied in accordance with a degree of the flexural (bending) deformation of wall 5A, viz., the pressure in the inside of pack casing 2 (strictly, the pressure difference with respect to the external atmospheric pressure). When the internal pressure is very high, gap ΔL is largely generated, as shown in
Since, even in the second embodiment, the deformation of pack casing 2 is basically carried out in the range of the elastic deformation, gap adjustment plate 13 substantially closes again opening section 12. Thus, since the inside of pack casing 2 is held in the very slight positive pressure state and the flow-in of external air, viz., oxygen is suppressed.
Next, on a basis of
In this way, rupture member 21 overlapped on opening section 12 is ruptured (broken) by the predetermined pressure, as shown in
When gas is mostly discharged (exhausted) and the pressure within pack casing 2 is reduced, in the same way as the first embodiment, gap adjustment plate 13 substantially closes opening section 12 and the flow-in of oxygen or air is suppressed.
In this way, in the structure in which rupture member 21 is further equipped, even if gap ΔL expands (enlarges) due to some deformation of pack casing 2, opening section 12 is held in a closed state until rupture member 21 reaches a setting pressure under which rupture member 21 is ruptured (broken). Hence, the setting of the pressure under which pressure release mechanism 11 is released is easy and highly accurate. In addition, a sealing characteristic of opening section 12 in the initial state is improved and the flow-in of air or oxygen is suppressed. Especially, as described before, in a case where the initial gap is provided between wall 5A and gap adjustment plate 13, the invasions of rain water and dust through the initial gap can assuredly be prevented through rupture member 21.
Next,
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/078144 | 10/5/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/060942 | 4/13/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3597282 | Farley | Aug 1971 | A |
6080505 | Pate | Jun 2000 | A |
20120114993 | Park | May 2012 | A1 |
20140227565 | Wan | Aug 2014 | A1 |
20150221910 | Ishiguro et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
101911337 | Dec 2010 | CN |
2010-165585 | Jul 2010 | JP |
2014-041841 | Mar 2014 | JP |
2014-60165 | Apr 2014 | JP |
2014-107178 | Jun 2014 | JP |
2015-28907 | Feb 2015 | JP |
2015-125901 | Jul 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20180261872 A1 | Sep 2018 | US |