The present invention relates to caps for containers and, more particularly, to pressure relief caps.
When containers are sealed with a cap, a pressure difference may develop between the interior of the container and the surrounding atmosphere. For example, pressure within the container may increase or decrease in response to changes in temperature and/or changes in phase of the contents of the container. When the pressure within the container differs from the pressure of the surrounding atmosphere, it may become difficult to remove the cap. In addition, if the cap is removed, rapid pressure equalization may cause contents of the container to be expelled out of the container.
The present disclosure may provide, in one independent aspect, a pressure relief cap configured to be coupled to a container. The pressure relief cap may include a body engageable with the container and rotatable about an axis to couple or decouple the body from the container, a handle coupled to the body and rotatable about the axis in a loosening direction and an opposite, tightening direction, and a ring member coupled for co-rotation with the handle in the loosening direction. The pressure relief cap may also include relief valve assembly coupled to the body. The ring member and the body may be configured with a lost motion region in which the ring member may be rotatable relative to the body in the loosening direction. Rotation of the ring member relative to the body in the loosening direction in the lost motion region may open the relief valve assembly, and rotation of the ring member in the loosening direction beyond the lost motion region may cause the body to co-rotate with the ring member in the loosening direction.
The pressure relief cap may also include a first biasing member coupled between the body and the ring member and configured to bias the ring member relative to the body in the tightening direction. The ring member may include a first rib, the body may include a second rib, and a first biasing member may be configured to bias the first rib into engagement with the second rib. Engagement of the first rib with the second rib may cause the body to co-rotate with the ring member in the tightening direction.
The ring member may include a third rib offset in a circumferential direction from the first rib, and the body may include a fourth rib offset in a circumferential direction from the second rib. Rotation of the handle in the loosening direction disengages the first rib and the second rib to allow the ring member to enter the lost motion region. When the ring member reaches the end of the lost motion region the third rib on the ring member engages with the fourth rib on the body to allow the body to co-rotate with the ring member and the handle.
A spacing between the first rib and the third rib may be less than a spacing between the second rib and the fourth rib. A difference between the spacing between the first rib and the third rib and the spacing between the second rib and the fourth rib may be about 45 degrees.
The relief valve assembly may include a plunger and a second biasing member operable to bias the plunger toward a sealed position. The ring member may include a cam-shaped actuator configured to move the plunger toward an unsealed position when the ring member rotates relative to the body in the loosening direction through the lost motion region.
The pressure relief cap may further include a ratchet assembly operable to permit the handle to rotate relative to the ring member in the tightening direction when torque applied to the handle in the tightening direction exceeds a predetermined torque threshold.
The present disclosure may provide, in another independent aspect, a pressure relief cap configured to be coupled to a container. The pressure relief cap may include a body engageable with the container and rotatable about an axis, a handle coupled to the body and rotatable about the axis in a loosening direction and a tightening direction, a ring member coupled for co-rotation with the handle in the loosening direction, and a relief valve assembly coupled to the body. The handle and the ring member may be rotatable relative to the body in the loosening direction from a first position to a second position. The relief valve assembly may be configured to open to vent the container in response to rotation of the handle and the ring member from the first position to the second position. The body may be configured to rotate in the loosening direction in response to further rotation of the handle and the ring member from the second position in the loosening direction.
Other independent aspects of the invention may become apparent by consideration of the detailed description and accompanying drawings.
Before any independent embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other independent embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Use of “including” and “comprising” and variations thereof as used herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Use of “consisting of” and variations thereof as used herein is meant to encompass only the items listed thereafter and equivalents thereof.
Also, the functionality described herein as being performed by one component may be performed by multiple components in a distributed manner. Likewise, functionality performed by multiple components may be consolidated and performed by a single component. Similarly, a component described as performing particular functionality may also perform additional functionality not described herein. For example, a device or structure that is “configured” in a certain way is configured in at least that way but may also be configured in ways that are not listed.
Relative terminology, such as, for example, “about”, “approximately”, “substantially”, etc., used in connection with a quantity or condition would be understood by those of ordinary skill to be inclusive of the stated value and has the meaning dictated by the context (for example, the term includes at least the degree of error associated with the measurement of, tolerances (e.g., manufacturing, assembly, use) associated with the particular value, etc.). Such terminology should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the expression “from about 2 to about 4” also discloses the range “from 2 to 4”.
The illustrated cap 10 includes a body 26 (
Referring to
In the illustrated embodiment, the handle 30 has a top side 62 and a circumferential side 66 extending downward from the top side 62. The illustrated circumferential side 66 has a plurality of ridges or undulations 70 (
The handle 30 is coupled to the body 26 via a ratchet 78 and a ring member 74 (
The ratchet 78 is fixed inside of the handle 30 (e.g., via a snap fit), such that the ratchet 78 co-rotates with the handle 30 (
The ratchet 78 and the ring member 74 thus define a ratchet assembly 106 (
In the illustrated embodiment, the ratchet assembly 106 only limits torque transfer in one rotational direction (e.g., the tightening direction 50). In some embodiments (not shown), the ratchet assembly 106 may be omitted, such that the handle 30 may be directly coupled to the ring member 74.
Referring to
The ring member 74 also includes a third rib 126 on the outer periphery of the ring member 74, offset in a circumferential direction from the first rib 110, and the body 26 includes a fourth rib 130 on the outer periphery of the body 26, offset in a circumferential direction from the second rib 118. The third rib 126 is engageable with the fourth rib 130 to cause the body 26 to co-rotate with the ring member 74 in the loosening direction 54.
In the illustrated embodiment, the spacing between the first and third ribs 110, 126 is less than the spacing between the second and fourth ribs 118, 130. Thus, a lost motion region is defined in the region between the second and fourth ribs 118, 130. That is, the ring member 74 is rotatable relative to the body 26 in either direction (e.g.,
In the illustrated embodiment, the lost motion region spans an angular distance of about 45 degrees. In other embodiments, the extent of the lost motion region may be varied based on the relative positions of the ribs 110, 118, 126, 130. Although only one set of ribs 110, 118, 126, 130 is described herein, the cap 10 may include multiple sets of ribs that engage and disengage simultaneously (e.g., to improve the strength of the torque-transmitting connection between the ring member 74 and the body 26).
With reference to
In the illustrated embodiment, the first biasing member 134 is a coil spring bent into an arc shape and accommodated within a toroidal pocket 136 in the body 26. In other embodiments (not shown), the first biasing member 134 may be a torsion spring or any other suitable means for biasing the ring member 74 relative to the body 26 in the tightening direction 50.
With continued reference to
An arm 166 extends from the upper retaining portion 146 of the plunger 142 for engagement with a cam shaped actuator 170 disposed adjacent an inner periphery of the ring member 26. The arm 166 extends from the top of the plunger 142 in an L-shape. The actuator 170 is slidable underneath the arm 166 when the ring member 74 is rotated relative to the body 26 in the loosening direction 54, and this movement actuates the valve assembly 138, as described in greater detail below.
The valve assembly 138 includes a second biasing member 182 disposed between an underside of the body 26 surrounding the valve bore 154 and the lower retaining portion 150. The second biasing member 182 acts on the plunger 142 to bias the plunger 142 downwardly, in the direction of arrow 186, such that the peripheral seal 162 is biased into engagement with a seat 190 surrounding the valve bore 154 in the body 26 (
In the illustrated embodiment, the second biasing member 182 is a coil spring, in other constructions (not shown), the second biasing member 182 may alternatively or additionally include, for example, magnets, a disc spring, or any other means for biasing the plunger 142.
The plunger 142 is axially movable along the valve axis 158 between a first position (
In operation, to close the container 18, the user inserts the body 26 of the cap 10 into the inlet 14 and grasps and rotates the handle 30 in the tightening direction 50 (
If torque applied to the handle 30 in the tightening direction 50 exceeds the torque threshold of the ratchet assembly 106, the arms 86 flex inwardly, and the pawls 90 ride over the associated ratchet teeth 98. As such, the handle 30 and the ratchet 78 rotate relative to the ring member 74 and the body 26, and the torque-transmitting connection between the handle 30 and the body 26 is at least momentarily disengaged. The ratchet assembly 106 may thus prevent over-tightening of the cap 10. In addition, when the pawls 90 ride over the ratchet teeth 98, the ratchet assembly 106 may provide audible and/or tactile feedback to the user that a sufficient level of torque (e.g., at or greater than a minimum retention torque) has been achieved.
To remove the cap 10 and open the container 18, the user grasps and rotates the handle 30 in the loosening direction 54. Torque is transferred from the handle 30, through the ratchet 78, and to the ring member 74. The torque required to compress the first biasing member 134 is less than the torque required to overcome the friction between the gasket 56 on the body 26 and the inlet 14 of the container 18, along with the friction between the threads 38, 42. As such, initial rotation of the handle 30 in the loosening direction 54 disengages the first rib 110 and the second rib 118 to allow the ring member 74 to enter the lost motion region (
In the lost motion region, the ring member 74 rotates against the first biasing member 134 (
As the user continues to apply torque in the loosening direction 54, the ring member 74 reaches the end of the lost motion region, and the third rib 126 on the ring member 74 engages with the fourth rib 130 on the body 26 (e.g., a second position of the ring member relative to the body 26). Continued rotation of the handle 30 is then transferred to the body 26 to allow the body 26 to be unscrewed from the threads 42 of the inlet 14.
Thus, the handle 30 and the ring member 74 may be rotated together relative to the body 26 in the loosening direction 54 from a first or initial position (e.g.,
Once the torque required to unscrew the body 26 from the inlet 14 reduces below the torque applied by the first biasing member 134 (e.g., when the gasket 56 is unseated from the inlet 14), the first biasing member 134 recovers and rotates the body 26 of the cap 10 relative to the handle 30 to the initial position of the body 26 in which the first rib 110 is engaged with the second rib 118. The relief valve assembly 138 closes under the influence of the second biasing member 182.
Because the gasket 56 is unseated, any pressure imbalance that may remain after initial venting through the relief valve assembly 138 can be equalized via flow between the threads 38, 42. The first biasing member 134 is stiff enough to cause the body 26 to co-rotate with the handle 30 as the user continues to rotate the handle 30 in the loosening direction 54, until the cap 10 is fully removed from the container 18.
The cap 310 includes a body 326, a handle 330 (
The upper portion 446 of the plunger 442 is formed with a rounded engagement surface, and the peripheral seal 462 surrounds the lower portion 450. When rotated, the cam shaped actuator 470 on the ring member 374 is configured to press down in the direction of arrow 486 against the rounded engagement surface on the upper portion 446 of the plunger 442 (
Thus, the present disclosure may provide a pressure relief cap 10, 310 with a relief valve assembly 138, 438 configured to relieve pressure from a container 18 when rotated in a loosening direction 54, 354. The cap 10, 310 may also include a body 26, 326 and a ring member 74, 374 that allows for the valve assembly 138, 438 to be actuated before a driving connection to remove the cap 10, 310 is established between the handle 36, 336 and the body 26, 326.
Although the disclosure has been described in detail with reference to certain independent embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the disclosure as described.
One or more independent features and/or advantages may be set forth in the following claims.
This application claims priority to U.S. Provisional Patent Application No. 62/775,564, filed Dec. 5, 2018, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3164288 | Boomgaard | Jan 1965 | A |
3203445 | McCormick | Aug 1965 | A |
4271976 | Detwiler | Jun 1981 | A |
4337873 | Johnson | Jul 1982 | A |
4379470 | Reutter | Apr 1983 | A |
4676390 | Harris | Jun 1987 | A |
4765505 | Harris | Aug 1988 | A |
4779755 | Harris | Oct 1988 | A |
4785961 | Kasugai | Nov 1988 | A |
4787529 | Harris | Nov 1988 | A |
4830058 | Harris | May 1989 | A |
4887733 | Harris | Dec 1989 | A |
4913303 | Harris | Apr 1990 | A |
5071020 | Reutter | Dec 1991 | A |
5108001 | Harris | Apr 1992 | A |
5110003 | MacWilliams | May 1992 | A |
5183173 | Heckman | Feb 1993 | A |
5279439 | Kasugai | Jan 1994 | A |
5449086 | Harris | Sep 1995 | A |
5480055 | Harris et al. | Jan 1996 | A |
5520300 | Griffin | May 1996 | A |
5522456 | Valk | Jun 1996 | A |
5540347 | Griffin | Jul 1996 | A |
5638975 | Harris | Jun 1997 | A |
5794806 | Harris | Aug 1998 | A |
5829620 | Harris | Nov 1998 | A |
6095363 | Harris | Aug 2000 | A |
6260726 | Muth | Jul 2001 | B1 |
6286704 | Harris | Sep 2001 | B1 |
6796451 | Harris | Sep 2004 | B2 |
7104415 | Reutter | Sep 2006 | B2 |
7131469 | Dunkle | Nov 2006 | B2 |
7163117 | Griffin | Jan 2007 | B2 |
7344042 | Hagano | Mar 2008 | B2 |
7353965 | Reutter | Apr 2008 | B2 |
7380681 | Reutter | Jun 2008 | B2 |
7624889 | Tharp | Dec 2009 | B2 |
7654403 | DeCapua | Feb 2010 | B2 |
8074334 | Tharp et al. | Dec 2011 | B2 |
8353418 | Bork | Jan 2013 | B2 |
8567628 | Dunkle et al. | Oct 2013 | B2 |
8740002 | Ripberger, Jr. | Jun 2014 | B2 |
9688135 | Dunkle | Jun 2017 | B2 |
20030102314 | Hagano | Jun 2003 | A1 |
20030150859 | Reutter | Aug 2003 | A1 |
20160031616 | Rye | Feb 2016 | A1 |
20160068061 | Whelan | Mar 2016 | A1 |
20160185209 | Ayers | Jun 2016 | A1 |
20170015194 | Frank et al. | Jan 2017 | A1 |
20190381880 | Kamiyama | Dec 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20200180830 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62775564 | Dec 2018 | US |