This disclosure generally relates to pressure reduction devices, and more specifically, to a pressure relief shipping adapter for reducing an internal pressure of a container prior to transportation.
Pressurized containers of oxygen gas are supplied to aircraft to be used in urgent situations. There is currently no tool, system, or method capable of verifying a safe condition of contents of these containers by reducing the internal pressure to a predetermined threshold value prior to transportation to the aircraft.
According to an embodiment, a pressure relief shipping adapter comprises a body comprising a first portion and a second portion. The first portion comprises a first bore and a set of protrusions, wherein a hole is disposed through the set of protrusions. The second portion comprises a second bore, wherein the second bore comprises a radial gap, wherein the radial gap comprises a uniform arc length along the length of the radial gap. A first end and a second end of the radial gap comprise a greater arc length than the radial gap. The pressure relief shipping adapter further comprises a pressure relief valve disposed at a first end of the first bore and an interlocking component comprising a first tab and a second.
According to another embodiment, a method of using a pressure relief shipping adapter that comprises coupling the pressure relief shipping adapter to a bottle head assembly, wherein the bottle head assembly is coupled to a container containing a pressurized gas. The method further comprises actuating a mechanical switch of the bottle head assembly to rotate about a set of hinges. The method further comprises reducing an internal pressure of the container by displacing a valve of the bottle head assembly into a valve depressor. The method further comprises actuating an interlocking component of the pressure relief shipping adapter from a first position to a second position, wherein the interlocking component comprises a first tab and a second tab, wherein the interlocking component is at least partially contained within a bore of the pressure relief shipping adapter that comprises a radial gap, wherein the first tab is disposed within a first end of the radial gap at the first position.
According to a further embodiment, a container pressure system comprises a bottle head assembly coupled to a container, wherein the container comprises a pressurized gas, wherein the bottle head assembly comprises a mechanical switch and a valve. The container pressure system further comprises a pressure relief shipping adapter coupled to the bottle head assembly. The pressure relief shipping adapter comprises a body comprising a first portion and a second portion. The first portion comprises a first bore and a set of protrusions, wherein a hole is disposed through the set of protrusions. The second portion comprises a second bore, wherein the second bore comprises a radial gap, wherein the radial gap comprises a uniform arc length along the length of the radial gap, wherein a first end and a second end of the radial gap comprise a greater arc length than the radial gap. The pressure relief shipping adapter further comprises a pressure relief valve disposed at a first end of the first bore and an interlocking component comprising a first tab and a second tab, wherein the interlocking component is at least partially contained within the second bore.
In the disclosed embodiments, a pressure relief shipping adapter couples to a bottle head assembly that is attached to a pressurized container. The pressure relief shipping adapter is configured to reduce an internal pressure of the container to a predetermined threshold value. A switch on the bottle head assembly may be operable to force a valve into a valve depressor to vent any pressurized contents from the container. The vented contents may be sealed within the pressure relief shipping adapter and may be released through a pressure relief valve. These embodiments may provide for an operator to verify a safe condition of contents of these containers by reducing the internal pressure to the predetermined threshold value prior to transportation.
Certain embodiments may include none, some, or all of the technical advantages discussed above. One or more other technical advantages may be readily apparent to one skilled in the art from the figures, descriptions, and claims included herein.
To assist in understanding the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings, in which:
To facilitate a better understanding of the present disclosure, the following examples of certain embodiments are given. The following examples are not to be read to limit or define the scope of the disclosure. Embodiments of the present disclosure and its advantages are best understood by referring to
Described herein are various systems, tools, and methods that provide for a structure to reduce the pressure within a pressurized container of oxygen gas prior to shipping and/or transportation.
As illustrated, a bottle head assembly 110 may be disposed on top of and coupled to the container 105. In embodiments, there may be an opening through the top of the container 105 to allow for fluid communication between an interior and an exterior of the container 105 of a given gas. As the bottle head assembly 110 is coupled to the top of the container 105, the interior of the container 105 may effectively be sealed. In embodiments, the bottle head assembly 110 may be any suitable size, height, shape, and combinations thereof, and the bottle head assembly 110 may comprise any suitable materials. Without limitations, the suitable materials may be metals, nonmetals, composites, polymers, and any combinations thereof. In one or more embodiments, the pressure relief shipping adapter 100 may be coupled to the container 105 through the bottle head assembly 110.
As illustrated, the mechanical switch 205 may be disposed near a top end 210 of the bottle head assembly 110. As shown, the mechanical switch 205 may be coupled to opposing sides of the bottle head assembly 110 near the top end 210 so as to be at least partially disposed around the bottle head assembly 110. In other embodiments, the mechanical switch 205 may be disposed about any suitable location on the bottle head assembly 110. The mechanical switch 205 may be configured to actuate between a first position and a second position, wherein switching between the first position and the second position may subsequently affect other components of the bottle head assembly 110. In embodiments, the mechanical switch 205 may be any suitable size, height, shape, and combinations thereof. The mechanical switch 205 may comprise any suitable materials such as metals, nonmetals, composites, and any combinations thereof.
The mechanical switch 205 may comprise a lateral bar 215, a set of coupling bars 220, and a set of hinges 225. The set of coupling bars 220 may be disposed at opposite sides of the lateral bar 215. In embodiments the set of coupling bars 220 may be perpendicular to the lateral bar 215. Each of the hinges 225 may be disposed at distal ends of each of the coupling bars 220 opposite from where the coupling bars 220 are connected to the lateral bar 215. The set of hinges 225 may couple the distal ends of the set of coupling bars 220 to the top end 210 of the bottle head assembly 110 and may provide a means of rotation for the mechanical switch 205, wherein the mechanical switch 205 may rotate about the set of hinges 225. Without limitations, the mechanical switch 205 may rotate any suitable degree range from the first position to the second position. In embodiments, the mechanical switch 205 may rotate within a degree range from about 0° to about 270°.
The pressure relief shipping adapter 100 may be coupled to the bottle head assembly 110 and may interact with components of the bottle head assembly 110. As previously described, the pressure relief shipping adapter 100 may be configured to reduce the internal pressure of the container 105 to a predetermined value. The pressure relief shipping adapter 100 may comprise a body 230, a pressure relief valve 235, a first bore 240, an interlocking component 245, and a set of protrusions 250. In embodiments, the body 230 may be any suitable size, height, shape, and combinations thereof. The body 230 may comprise any suitable materials such as metals, nonmetals, composites, and any combinations thereof. The body 230 may be configured to house, contain, accommodate, and any combinations thereof any of the other components of the pressure relief shipping adapter 100 and/or of the bottle head assembly 110. The body 230 may comprise a first portion 255 and a second portion 260. The first portion 255 of the body 230 may generally be cylindrical in shape and may comprise a through-bore (as seen in
The pressure relief valve 235 may be disposed about the first portion 255 of the body 230. As disclosed, the pressure relief valve 235 may be disposed about one end of the through-bore of the first portion 255, wherein the bottle head assembly 110 may be coupled to the opposing end of the through-bore. Without limitations, any suitable pressure relief valve may be used as the disclosed pressure relief valve 235. In embodiments, the pressure relief valve 235 may be set to a predetermined threshold value. The pressure relief valve 235 may be operable to reduce an internal pressure of the container 105 to the predetermined value of the pressure relief valve 235, based, at least in part, on the operation of the mechanical switch 205.
The first bore 240 may be disposed about the second portion 260 of the body 230, wherein the direction of the first bore 240 may be perpendicular to a central axis of the bottle head assembly 110. The first bore 240 may fully extend through the second portion 260. In embodiments, the first bore 240 may not be fully enclosed but may be partially open. As illustrated, there may be a radial gap 265 disposed through a portion of the second portion 260 of the body 230 that exposes the first bore 240 to an external environment. The radial gap 265 may have a uniform arc length along the length of the radial gap 265, wherein the arc length is the distance between two opposing points along a section of a curve (for example, the portion of the second portion 260 designated as the radial gap 265). At each of a first end 270a and a second end 270b (collectively referred to herein as the “ends 270”) of the radial gap 265, the arc length may be greater than the arc length along the length of the radial gap 265. For example, the central angle used to calculate the arc length at the ends 270 may be greater than the central angle used to calculate the arc length along the length of the radial gap 265. In embodiments, the arc length at both of the ends 270 may be equivalent. While the arc length at the ends 270 may be greater than that along the length of the radial gap 265, each of the first end 270a and the second end 270b may share a common point used in determining the arc length with the section along the length of the radial gap 265. For example, the arc length along the length of the radial gap 265 may be determined from a first point 275a and a second point 275b of a portion of the circumference of the first portion. The arc length of the first end 270a may be determined, at least in part, on the first point 275a, and the arc length of the second end 270b may be determined, at least in part, on the second point 275b. As such, the arc lengths of the first end 270a and the second end 270b may be disposed in opposing tangential directions from each other.
As illustrated, the first bore 240 may be configured to receive and at least partially contain the interlocking component 245. In embodiments, the interlocking component 245 may be any suitable size, height, shape, and combinations thereof. The interlocking component 245 may generally be in the shape of a rod or an elongated cylinder. The interlocking component 245 may comprise any suitable materials such as metals, nonmetals, composites, and any combinations thereof. The interlocking component 245 may be configured to interact with the mechanical switch 205 of the bottle head assembly 110. The interlocking component 245 may comprise a first tab 280a and a second tab 280b (collectively referred to herein as the “tabs 280”). Both the first tab 280a and the second tab 280b may be structures disposed along the length of the interlocking component 245 and extend outwards from the interlocking component 245. In embodiments, both tabs 280 may comprise the same size, height, shape, and combinations thereof. Both tabs 280 further may be disposed in the same direction parallel to each other. During operations, the interlocking component 245 may be configured to translate at least partially along the first bore 240, wherein the first tab 280a may be confined by the radial gap 265.
To couple the pressure relief shipping adapter 100 to the bottle head assembly 110, the set of protrusions 250 may be utilized. The set of protrusions 250 may be disposed about the first portion 255 of the body 230 opposite to the second portion 260. The set of protrusions 250 may comprise a hole 285 configured to receive a pin (not shown) to fix the pressure relief shipping adapter 100 to the bottle head assembly 110. The hole 285 may be located at the same position on each of the protrusions 250 to where there is a single, concentric hole as hole 285. In embodiments, a portion of the bottle head assembly 110 may be disposed between the set of protrusions 250, wherein that portion may also have a hole. The hole of the portion of the bottle head assembly 110 may be aligned with the hole 285, wherein the pin (not shown) may be disposed through the hole 285 and the hole in the portion of the bottle head assembly 110. In one or more embodiments, any suitable fasteners may be used with or in replacement of the pin to secure the set of protrusions 250 to the portion of the bottle head assembly 110, thereby coupling the pressure relief shipping adapter 100 to the bottle head assembly 110.
Once the mechanical switch 205 is in the second position, the pressure relief shipping adapter 100 may be operable to change to the second position, as illustrated in
The present disclosure may provide numerous advantages, such as the various technical advantages that have been described with respective to various embodiments and examples disclosed herein. Other technical advantages will be readily apparent to one skilled in the art from the following figures, descriptions, and claims. Moreover, while specific advantages have been enumerated in this disclosure, various embodiments may include all, some, or none of the enumerated advantages.
Herein, “or” is inclusive and not exclusive, unless expressly indicated otherwise or indicated otherwise by context. Therefore, herein, “A or B” means “A, B, or both,” unless expressly indicated otherwise or indicated otherwise by context. Moreover, “and” is both joint and several, unless expressly indicated otherwise or indicated otherwise by context. Therefore, herein, “A and B” means “A and B, jointly or severally,” unless expressly indicated otherwise or indicated otherwise by context.
Unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the embodiments of the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claim, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
The scope of this disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments described or illustrated herein that a person having ordinary skill in the art would comprehend. The scope of this disclosure is not limited to the example embodiments described or illustrated herein. Moreover, although this disclosure describes and illustrates respective embodiments herein as including particular components, elements, feature, functions, operations, or steps, any of these embodiments may include any combination or permutation of any of the components, elements, features, functions, operations, or steps described or illustrated anywhere herein that a person having ordinary skill in the art would comprehend. Furthermore, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Additionally, although this disclosure describes or illustrates particular embodiments as providing particular advantages, particular embodiments may provide none, some, or all of these advantages.
Number | Name | Date | Kind |
---|---|---|---|
4420013 | DiBlasio | Dec 1983 | A |
4441357 | Kahn et al. | Apr 1984 | A |
4499914 | Bernard et al. | Feb 1985 | A |
4651728 | Gupta et al. | Mar 1987 | A |
4766763 | Kurtz | Aug 1988 | A |
4880134 | Wood, Jr. | Nov 1989 | A |
5282493 | Schwartz | Feb 1994 | A |
6047727 | Hatori | Apr 2000 | A |
6357465 | Caldwell | Mar 2002 | B1 |
6439032 | Lehmann | Aug 2002 | B1 |
7818133 | Furuse | Oct 2010 | B2 |
9089721 | Horstman et al. | Jul 2015 | B1 |
10274118 | Takezawa | Apr 2019 | B2 |
10545067 | Phaff et al. | Jan 2020 | B2 |
11519558 | Ligonesche | Dec 2022 | B2 |
20040221919 | MacNeal | Nov 2004 | A1 |
20080289700 | Masingale | Nov 2008 | A1 |
20130220447 | Zeyfang | Aug 2013 | A1 |
20130233440 | Holder | Sep 2013 | A1 |
20160325122 | Contino et al. | Nov 2016 | A1 |
20200240524 | Vignerol | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
108591820 | Sep 2018 | CN |
2796848 | Dec 2017 | EP |
57008432 | Jan 1982 | JP |
Number | Date | Country | |
---|---|---|---|
20220196212 A1 | Jun 2022 | US |