The present invention relates to a pressure-relieving and sealing device for use in home fermentation.
The practice of home pickling or fermentation of foods is growing rapidly in popularity. The most commonly fermented foods are sauerkraut or pickles, but there are countless other fermented foods including virtually any of the vegetables including carrots, garlic, onions, peppers, turnips, radishes, cauliflower, etc. The list also includes meats, beans, grains and milk. Consumers are becoming increasingly aware that fermentation is a safe and easy process to preserve food (primarily vegetables) that enhances their flavor, texture and nutritional quality. Home fermentation and particularly lactic acid fermentation is a simple way to preserve food while enhancing the flavors and nutritional qualities.
Fermentation is an anaerobic process whereby the food is broken down and converted by naturally occurring bacteria that feed on the food sugars. The fermenting process acts to pre-digest foods, making their nutrients more available and diverse. Fermented foods having active lactic acid bacteria have been found to be especially supportive of digestive health, immune function and general good health. The more recent marketing of “pro-biotic” foods is simply an example of making new what has been an old and widespread practice. The home fermentation of foods was a more widespread practice in the past and it is very widely practiced in other cultures around the world.
The typical consumer maybe somewhat “wary” of home fermenting due to heightened and generally unwarranted bias against all forms of bacteria, beneficial or otherwise. Of course, most people are not aware of the vast number of beneficial bacteria (by some estimates over 10,000 types) that they are hosting in their bodies. There are other impediments to home fermentation, but they are mostly attributable to a lack of understanding of the basic fermentation process and the relative difficulty of finding consumer products with convenient utility to support the home fermentation process. The typical home fermentation is performed using a relatively large volume pottery vessel or crock. This “crock” type of fermentation generally requires that a substantially large quantity of food be prepared and fermented for each batch. Additionally, since there are no convenient means to ensure that this “crock” fermentation is done in an anaerobic environment, the result is often inconsistent or of poor quality.
In order to make home fermentation more accessible to the average consumer, there is a real need for a simple, standardized product to allow them to conveniently prepare smaller, batches of safe, anaerobic fermented foods.
It is the primary objective of the instant invention to provide a simple, reliable, low maintenance, low cost device for converting a standard sized canning jar to be used for anaerobic, lactic acid fermentation, i.e. making homemade sauerkraut, pickles, kefir, or other ferments. The key feature of this improved device is the use of a resilient, food contact approved material to be used in place of the rigid (metal) sealing panel of a standard canning jar. The instant invention is a flexible “rubber-like” sealing panel that includes an incorporated pressure-relieving, check valve to release the carbon dioxide produced by the fermentation process and prevent air (oxygen) ingress.
The specific problem that the instant invention seeks to solve is that of consumers having to prepare larger fermentation batches than they typically need or want and further to eliminate the required maintenance and air ingress that often occurs with water airlock or slit valve configured home fermentation devices.
The patent figures are intended to demonstrate some, but not necessarily all of the design configurations for the PRESSURE RELIEVING PANEL FOR A CANNING JAR may have. These figures are not intended to show all of the potential device embodiments, but rather to demonstrate the design versatility of the instant invention.
Referring to the
Referring to
Referring to
The resilient, pressure-relieving panels and lid that I have disclosed allow for a simple, safe and anaerobic fermentation process to be maintained in any standard sized caning jar. They are superior to the current water based air-lock fermentation devices that because of evaporation, require regular monitoring of the water trap or cap-covered, water moat to prevent air ingress. They are further superior in that they serve the secondary function of sealing the entire caning jar against air ingress. This air ingress is a very common problem where these water based air-lock devices are interference fitted with a grommet seal incorporated into the rigid panel of the caning jar. It should be noted that during the fermentation process, the pressure inside the jar is not always greater than that outside the jar. The one way check valves incorporated into the resilient panels and lid do not allow outside oxygenated air back into the jar as may occur with simple slit type valves or when comparatively lower jar pressure causes siphoning or air ingress to occur with a water trap or cap covered moat. A further advantage of these incorporated check valves is that depending on their configuration, they can allow for achieving an optimal CO2 pressure in the canning jar. There are some instances where it is desirable to maintain a relatively high CO2 pressure in the jar as when fermenting alcoholic beverages. The ball type check valve design lends itself to having different sized check balls to control the pressure at which the CO2 will vent. Or alternatively, it is possible to have color-coded resilient panels or check balls that relieve the CO2 at different internal pressures. This venting pressure control is not possible with water lock or slit type fermentation device configurations.
The design embodiments detailed in the instant patent application are simple integral configurations that take advantage of the resilient sealing panel construction. The pressure relieving panels and lid configuration are extremely simple (single piece panel) and economical to manufacture. Finally, the preferred resilient material to use for the pressure relieving panels or lid of the instant invention is a food grade silicone or food grade pvc rubber. This material has become very popular for cooking and food contact products because it does not impart any objectionable odors or flavors, is extremely stable and non-reactive when placed in direct contact with food, even very acidic or basic foods.
I have now described my invention in considerable detail, however others skilled in the art can devise and develop alternate and equivalent constructions. Hence, I desire my protection to be limited not by the design embodiments described, but only by the proper scope of the appended claims.
Applicant claims the benefit of the provisional application Ser. No. 62/391,763 filed on May 11, 2016.
Number | Date | Country | |
---|---|---|---|
62391763 | May 2016 | US |