Pressure Sensitive Adhesive Tape for the Adhesion of Printing Plates and Method for the Production Thereof

Abstract
A pressure-sensitive adhesive tape made of a flat support material provided with a pressure sensitive adhesive comprising a polymer formed from a monomer mixture of acrylic acid ester and/or methyl acrylic acid ester or free acids thereof of the formula CH2=CH(R1)(COOR2), acrylic acid ester and/or methyl acrylic acid ester having the formula CH2=CH(R3)(COOR4) and acrylic aid ester and/or methyl acrylic acid ester having the formula CH2=CH(R3)(COOR5).
Description
EXAMPLE 1

A 2 L glass reactor conventional for free-radical polymerizations was charged with 8 g of acrylic acid, 272 g of 2-ethylhexyl acrylate, 120 g of isobornyl acrylate and 266 g of 1:1 acetone:special-boiling-point spirit 60/95. After nitrogen gas had been passed through the reactor for 45 minutes with stirring, the reactor was heated to 58° C. and 0.2 g of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) in solution in 10 g of acetone was added.


Subsequently the external heating bath was heated to 75° C. and the reaction was carried out constantly at this external temperature. After a reaction time of 1 h a further 0.2 g of AIBN in solution in 10 g of acetone was added. After a reaction time of 5 hours 0.8 g of bis(4-tert-butylcyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 6 hours the batch was diluted with 100 g of special-boiling-point spirit 60/95. After a reaction time of 7 hours 0.8 g of bis(4-tert-butyl-cyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 10 hours the batch was diluted with 150 g of special-boiling-point spirit 60/95. After a reaction time of 24 h the reaction was discontinued and the product cooled to room temperature. Subsequently the polyacrylate was blended with 0.6% by weight of aluminum(IIII) acetylacetonate (3% strength solution, acetone) and the blend was diluted to a solids content of 30% with special-boiling-point spirit 60/95 and then coated from solution onto a PET film. After drying at 120° C. for 30 minutes, the application rate was 50 g/m2. The technical adhesive properties were analyzed by carrying out test methods A, B and C.


EXAMPLE 2

A 2 L glass reactor conventional for free-radical polymerizations was charged with 8 g of acrylic acid, 312 g of 2-ethylhexyl acrylate, 80 g of isobornyl acrylate and 170 g of 1:1 acetone:special-boiling-point spirit 60/95. After nitrogen gas had been passed through the reactor for 45 minutes with stirring, the reactor was heated to 58° C. and 0.2 g of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) in solution in 10 g of acetone was added. Subsequently the external heating bath was heated to 75° C. and the reaction was carried out constantly at this external temperature. After a reaction time of 1 h a further 0.2 g of AIBN in solution in 10 g of acetone was added. After a reaction time of 5 hours 0.8 g of bis(4-tert-butylcyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 6 hours the batch was diluted with 100 g of special-boiling-point spirit 60/95. After a reaction time of 7 hours 0.8 g of bis(4-tert-butyl-cyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 10 hours the batch was diluted with 150 g of special-boiling-point spirit 60/95. After a reaction time of 24 h the reaction was discontinued and the product cooled to room temperature. Subsequently the polyacrylate was blended with 0.6% by weight of aluminum(IIII) acetylacetonate (3% strength solution, acetone) and the blend was diluted to a solids content of 30% with special-boiling-point spirit 60/95 and then coated from solution onto a PET film. After drying at 120° C. for 30 minutes, the application rate was 50 g/m2. The technical adhesive properties were analyzed by carrying out test methods A, B and C.


EXAMPLE 3

A 2 L glass reactor conventional for free-radical polymerizations was charged with 8 g of acrylic acid, 312 g of 2-ethylhexyl acrylate, 80 g of stearyl acrylate and 266 g of 1:1 acetone:special-boiling-point spirit 60/95. After nitrogen gas had been passed through the reactor for 45 minutes with stirring, the reactor was heated to 58° C. and 0.2 g of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) in solution in 10 g of acetone was added. Subsequently the external heating bath was heated to 75° C. and the reaction was carried out constantly at this external temperature. After a reaction time of 1 h a further 0.2 g of AIBN in solution in 10 g of acetone was added. After a reaction time of 5 hours 0.8 g of bis(4-tert-butylcyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 6 hours the batch was diluted with 100 g of special-boiling-point spirit 60/95. After a reaction time of 7 hours 0.8 g of bis(4-tert-butyl-cyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 10 hours the batch was diluted with 150 g of special-boiling-point spirit 60/95. After a reaction time of 24 h the reaction was discontinued and the product cooled to room temperature. Subsequently the polyacrylate was blended with 0.6% by weight of aluminum(IIII) acetylacetonate (3% strength solution, acetone) and the blend was diluted to a solids content of 30% with special-boiling-point spirit 60/95 and then coated from solution onto a PET film. After drying at 120° C. for 30 minutes, the application rate was 50 g/m2. The technical adhesive properties were analyzed by carrying out test methods A, B and C.


EXAMPLE 4

A 2 L glass reactor conventional for free-radical polymerizations was charged with 8 g of acrylic acid, 352 g of 2-ethylhexyl acrylate, 40 g of isobornyl acrylate and 170 g of 1:1 acetone:special-boiling-point spirit 60/95. After nitrogen gas had been passed through the reactor for 45 minutes with stirring, the reactor was heated to 58° C. and 0.2 g of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) in solution in 10 g of acetone was added. Subsequently the external heating bath was heated to 75° C. and the reaction was carried out constantly at this external temperature. After a reaction time of 1 h a further 0.2 g of AIBN in solution in 10 g of acetone was added. After a reaction time of 5 hours 0.8 g of bis(4-tert-butylcyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 6 hours the batch was diluted with 100 g of special-boiling-point spirit 60/95. After a reaction time of 7 hours 0.8 g of bis(4-tert-butyl-cyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 10 hours the batch was diluted with 150 g of special-boiling-point spirit 60/95. After a reaction time of 24 h the reaction was discontinued and the product cooled to room temperature. Subsequently the polyacrylate was blended with 0.6% by weight of aluminum(IIII) acetylacetonate (3% strength solution, acetone) and the blend was diluted to a solids content of 30% with special-boiling-point spirit 60/95 and then coated from solution onto a PET film. After drying at 120° C. for 30 minutes, the application rate was 50 g/m2. The technical adhesive properties were analyzed by carrying out test methods A, B and C.


REFERENCE R1

A 2 L glass reactor conventional for free-radical polymerizations was charged with 8 g of acrylic acid, 372 g of 2-ethylhexyl acrylate, 20 g of isobornyl acrylate and 170 g of 1:1 acetone:special-boiling-point spirit 60/95. After nitrogen gas had been passed through the reactor for 45 minutes with stirring, the reactor was heated to 58° C. and 0.2 g of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) in solution in 10 g of acetone was added. Subsequently the external heating bath was heated to 75° C. and the reaction was carried out constantly at this external temperature. After a reaction time of 1 h a further 0.2 g of AIBN in solution in 10 g of acetone was added. After a reaction time of 5 hours 0.8 g of bis(4-tert-butylcyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 6 hours the batch was diluted with 100 g of special-boiling-point spirit 60/95. After a reaction time of 7 hours 0.8 g of bis(4-tert-butyl-cyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 10 hours the batch was diluted with 150 g of special-boiling-point spirit 60/95. After a reaction time of 24 h the reaction was discontinued and the product cooled to room temperature. Subsequently the polyacrylate was blended with 0.6% by weight of aluminum(IIII) acetylacetonate (3% strength solution, acetone) and the blend was diluted to a solids content of 30% with special-boiling-point spirit 60/95 and then coated from solution onto a PET film. After drying at 120° C. for 30 minutes, the application rate was 50 g/m2. The technical adhesive properties were analyzed by carrying out test methods A, B and C.


REFERENCE R2

A 2 L glass reactor conventional for free-radical polymerizations was charged with 8 g of acrylic acid, 192 g of 2-ethylhexyl acrylate, 200 g of isobornyl acrylate and 170 g of 1:1 acetone:special-boiling-point spirit 60/95. After nitrogen gas had been passed through the reactor for 45 minutes with stirring, the reactor was heated to 58° C. and 0.2 g of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) in solution in 10 g of acetone was added. Subsequently the external heating bath was heated to 75° C. and the reaction was carried out constantly at this external temperature. After a reaction time of 1 h a further 0.2 g of AIBN in solution in 10 g of acetone was added. After a reaction time of 5 hours 0.8 g of bis(4-tert-butylcyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 6 hours the batch was diluted with 100 g of special-boiling-point spirit 60/95. After a reaction time of 7 hours 0.8 g of bis(4-tert-butyl-cyclohexanyl) peroxydicarbonate (Perkadox 16™, Akzo Nobel) in solution in 10 g of acetone was added. After 10 hours the batch was diluted with 150 g of special-boiling-point spirit 60/95. After a reaction time of 24 h the reaction was discontinued and the product cooled to room temperature. Subsequently the polyacrylate was blended with 0.6% by weight of aluminum(IIII) acetylacetonate (3% strength solution, acetone) and the blend was diluted to a solids content of 30% with special-boiling-point spirit 60/95 and then coated from solution onto a PET film. After drying at 120° C. for 30 minutes, the application rate was 50 g/m2. The technical adhesive properties were analyzed by carrying out test methods A, B and C.


REFERENCE R3

A 2 L glass reactor conventional for free-radical polymerizations was charged with 8 g of acrylic acid, 352 g of 2-ethylhexyl acrylate, 40 g of isobornyl acrylate and 170 g of 1:1 acetone:special-boiling-point spirit 60/95. After nitrogen gas had been passed through the reactor for 45 minutes with stirring, the reactor was heated to 58° C. and 0.2 g of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) in solution in 10 g of acetone was added. Subsequently the external heating bath was heated to 75° C. and the reaction was carried out constantly at this external temperature. After a reaction time of 1 h a further 0.2 g of AIBN in solution in 10 g of acetone was added. After 6 hours the batch was diluted with 100 g of special-boiling-point spirit 60/95. After 10 hours the batch was diluted with 150 g of special-boiling-point spirit 60/95. After a reaction time of 24 h the reaction was discontinued and the product cooled to room temperature. Subsequently the polyacrylate was blended with 0.6% by weight of aluminum(IIII) acetylacetonate (3% strength solution, acetone) and the blend was diluted to a solids content of 30% with special-boiling-point spirit 60/95 and then coated from solution onto a PET film.


Bond Strength Determination of Examples 1-4 and Reference Examples R1 and R2












TABLE 1






BS to steel





instantaneousa
BS to steel after 72 hb
BS after 60° C.c



[N/cm]
[N/cm]
[N/cm]


Example
Test A
Test C
Test B







1
5.0
5.2
5.5


2
3.8
4.2
4.4


3
2.4
2.7
2.9


4
3.0
3.4
3.7


R1
2.7
3.6
5.4


R2
2.2
2.6
6.0






aBS = bond strength to steel at 23° C. and 50% atmospheric humidity, measured after bonding.




bBS = bond strength to steel at 23° C. and 50% atmospheric humidity after 72 hours of bonding.




cBS = bond strength to steel at 23° C. and 50% atmospheric humidity after bonding; the PSA tapes were stored at 60° C. for 3 months beforehand. 50 g/m2 application rate to PET film 25 μm thick.







From the figures from table 1 it can be inferred that the inventive examples, even under very extreme storage conditions, possess only a very low peel increase. In contrast, the examples R1 and R2 already exhibit a much greater peel increase, since in the case of R1 the adhesive is already very soft and is therefore able to flow out very well over a prolonged period of time. Reference example R2, by contrast, is very hard and therefore exhibits—especially at high temperatures—an improved flow-out and hence a high peel increase in test C. For use for the bonding of printing plates it is preferred to use pressure-sensitive adhesives having a low peel increase preferably, in order that the PSA tape can be removed again easily after the printing process. The bonds may extend from several days through to several months, so that test C in particular is very informative as regards the suitability of a pressure-sensitive adhesive for bonding printing plates. Here, the inventive adhesives produced according to the method show themselves to be very advantageous as compared, for example, with the systems containing only a very low fraction (R1) or a very high fraction (R2) of isobornyl acrylate.


Production of the Double-Sided PSA Tape Assembly:

A PET film 25 μm thick and etched on both sides with trichloroacetic acid was coated with examples 1, 2, 3, 4, R1 or R2. Following crosslinking and drying, the application rate was 20 g/m2. For this purpose the film was coated directly from solution with the examples and dried at 100° C. for 30 minutes. The specimens thus coated were lined with a double-sidedly siliconized release paper. Subsequently, a commercially customary acrylate PSA was laminated via a transfer carrier onto the uncoated side of the existing assembly, with an application rate of 20 g/m2.


In the following step, a EVA foam with a thickness of 500 μm and a density of 270 kg/m3 was laminated on. Then, again via a transfer carrier, a commercially customary acrylate PSA is laminated onto this foam carrier, onto the uncoated side of the existing assembly, at an application rate of 50 g/m2.


Adhesive Bonding of Printing Plates and Use:

The double-sided PSA tapes described above with the adhesive side lying open (see FIG. 1, layer 9) were adhered to a steel cylinder having a diameter of 110 mm. On top of this, a printing plate from DuPont Cyrel® HOS with a thickness of 1.7 mm, with layer 2 from the figure was bonded to the PSA (layer 3 in FIG. 1). This steel cylinder with printing plate was subsequently inserted into a printing machine where it was used for printing for 16 hours with a print setting of 150 μm.


For all of the examples, the printing plate was very easy to remove by hand from the double-sided adhesive tape, without any residue.

After 7-day storage at 23° C. and 50% atmospheric humidity, the edge lifting of the printing plate from the double-sided PSA tape was ascertained. The values are reported in mm, are averaged from three measurements, and are summarized in table 2.












TABLE 2







Example
Edge lifting of the printing plate in mm



















1
5



2
20



3
25



4
18



R1
55



R2
60



R3
35










A PSA tape suitable for printing-plate bonding ought to exhibit edge lifting of less than 30 mm. The boundary is a function of the fact that, at higher values, the printing process is severely impaired.


Examples 1 to 4 meet this requirement on the one hand as a result of the production method, which allows the formation of graft copolymers. Example R3, without a graft initiator, demonstrates that the edge lifting deteriorates markedly. On the other hand, examples 1 to 4 in combination with the inventive method show that edge lifting can be reduced to the degree necessary.

Claims
  • 1. A pressure-sensitive adhesive tape having a flat carrier material which is coated on both sides with a pressure-sensitive adhesive, wherein at least one side of the carrier material is coated with a pressure-sensitive adhesive comprising polymers formed from a monomer mixture of at least the following components: i.a) 49.5%-89.5% by weight (based on the monomer mixture) of acrylic esters and/or methacrylic esters and/or the corresponding free acids with the following formula: CH2=CH(R1)(COOR2),where R1=H or CH3 and R2 is an alkyl radical having 1 to 10 carbon atoms or H and the homopolymer possesses a static glass transition temperature of <−30° C.;i.b) 10% to 40% by weight (based on the monomer mixture) of acrylic esters and/or methacrylic esters with the following formula: CH2=CH(R3)(COOR4),where R3=H or CH3 and R4 is a cyclic alkyl radical having at least 8 carbon atoms or a linear alkyl radical having at least 12 carbon atoms and the homopolymer possesses a static glass transition temperature of at least 30° C.;i.c) 0.5%-10% by weight (based on the monomer mixture) of acrylic esters and/or methacrylic esters with the following formula: CH2=CH(R3)(COOR5),where R3=H or CH3 and R5=H or an aliphatic radical containing a functional group X, X comprising COOH, OH, —NH, NH2, SH, SO3H, and the homopolymer possesses a static glass transition temperature of at least 30° C.
  • 2. The pressure-sensitive adhesive tape of claim 1, wherein the polymers of the pressure-sensitive adhesive have a molar mass Mn of between about 10 000 and about 600 000 g/mol.
  • 3. The pressure-sensitive adhesive tape of claim 1, wherein the polymers of the pressure-sensitive adhesive are crosslinked.
  • 4. The pressure-sensitive adhesive tape of claim 1, wherein said polymers are present in a branched state as graft polymers.
  • 5. The pressure-sensitive adhesive tape of claim 1, wherein said pressure-sensitive adhesive comprises tackifier resins.
  • 6. The pressure-sensitive adhesive tape of claim 5, wherein the weight fraction of the tackifier resins as a proportion of the polymer is up to 40% by weight.
  • 7. The pressure-sensitive adhesive tape of claim 1, wherein the pressure-sensitive adhesive comprises additives selected from the group consisting of plasticizers, fillers, nucleators, expandants, compounding agents, aging inhibitors, and light stabilizers.
  • 8. The pressure-sensitive adhesive tape of claim 1, wherein the carrier material is a film, of polyester, PET, PE, PP, BOPP or PVC.
  • 9. The pressure-sensitive adhesive tape claim 1, wherein the carrier material is a polymer foam of PU, PVC or polyolefin.
  • 10. The pressure-sensitive adhesive tape claim 1, wherein the carrier material is a combination of a film and at least one foam carrier, the film being connected by adhesive bonding to the at least one foam carrier.
  • 11. The pressure-sensitive adhesive tape of claim 8, wherein the film is a film made of PET and has a thickness of 5 to 500 μm.
  • 12. The pressure-sensitive adhesive tape of claim 1, wherein the carrier material is pretreated by flame, corona and/or plasma, and/or chemically, and/or by provision with primer.
  • 13. The pressure-sensitive adhesive tape of claim 1, having a liner on one or both sides.
  • 14. The pressure-sensitive adhesive tape of claim 1, wherein two sides of the adhesive tape are coated with pressure-sensitive adhesive, and the two sides of the adhesive tape have pressure-sensitive adhesives differing in bond strength.
  • 15. A free-radical polymerization method of producing the pressure-sensitive adhesive tape of claim 1, wherein a reaction solution of a monomer mixture comprising at least the following components: i.a) 49.5%-89.5% by weight (based on the monomer mixture) of acrylic esters and/or methacrylic esters and/or the corresponding free acids with the following formula: CH2=CH(R1)(COOR2),where R1=H or CH3 and R2 is an alkyl radical having 1 to 10 carbon atoms or H and the homopolymer possesses a static glass transition temperature of <−30° C.;i.b) 10% to 40% by weight (based on the monomer mixture) of acrylic esters and/or methacrylic esters with the following formula: CH2=CH(R3)(COOR4),where R3=H or CH3 and R4 is a cyclic alkyl radical having at least 8 carbon atoms or a linear alkyl radical having at least 12 carbon atoms and the homopolymer possesses a static glass transition temperature of at least 30° C.;i.c) 0.5%-10% by weight (based on the monomer mixture) of acrylic esters and/or methacrylic esters with the following formula: CH2=CH(R3)(COOR5),where R3=H or CH3 and R5=H or an aliphatic radical containing a functional group X, X comprising COOH, OH, —NH, NH2, SH, SO3H, and the homopolymer possesses a static glass transition temperature of at least 30° C.,with the addition of an initiator having a grafting activity of ε<5 and of an initiator having a grafting activity of ε>5, is prepared and polymerized, and the resulting polymers are crosslinked.
  • 16. The method of claim 15, wherein first the initiator having a grafting activity of ε<5 is added for a linear polymerization and then the initiator having a grafting activity of ε>5 is added for a graft polymerization of the reaction solution.
  • 17. The method of claim 16, wherein after the initiator having a grafting activity of ε<5 is added and before the initiator having a grafting activity of ε>5 is added, initiation is repeated at least once with an initiator having a grafting activity of ε<5.
  • 18. The method of any one of claims 15 to 17, characterized in that the reaction is controlled by diluting the reaction solution in accordance with the viscosity of the polymer.
  • 19. The method of any one of claims 15 to 17, wherein the polymerization is carried out at a temperature of 50-90° C.
  • 20. The method of any one of claims 15 to 17, wherein the initiator having a grafting activity of ε>5 is used in an amount of up to 2% by weight, based on the monomer mixture.
  • 21. The method of any one of claims 15 to 17, wherein the initiator having a grafting activity of ε>5 has a grafting activity ofε>10.
  • 22. The method of any one of claims 15 to 17, wherein the initiator having a grafting activity of ε<5 is 2,2-azobis(2-methylbutyronitrile).
  • 23. The method of any one of claims 15 to 17, wherein the polymerization is carried out to a conversion of at least 90.
  • 24. The method of any one of claims 15 to 17, wherein the method is carried out as a controlled polymerization with the addition of regulator substances.
  • 25. The method of claim 24, wherein said regulator is selected from the group consisting of 2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (PROXYL), 3-carbamoyl-PROXYL, 2,2-dimethyl-4,5-cyclohexyl-PROXYL, 3-oxo-PROXYL, 3-hydroxylimine-PROXYL, 3-aminomethyl-PROXYL, 3-methoxy-PROXYL, 3-t-butyl-PROXYL, 3,4-di-t-butyl-PROXYL; 2,2,6,6-tetramethyl-1-piperidinyloxyl-(TEMPO), 4-benzoyloxy-TEMPO, 4-methoxy-TEMPO, 4-chloro-TEMPO, 4-hydroxy-TEMPO, 4-oxo-TEMPO, 4-amino-TEMPO, 2,2,6,6-tetraethyl-1-piperidinyloxyl, 2,2,6-trimethyl-6-ethyl-1-piperidinyloxyl, N-tert-butyl 1-phenyl-2-methylpropyl nitroxide, N-tert-butyl 1-(2-naphthyl)-2-methylpropyl nitroxide, N-tert-butyl 1-diethylphosphono-2,2-dimethylpropyl nitroxide, N-tert-butyl 1-dibenzylphosphono-2,2-dimethylpropyl nitroxide, N-(1-phenyl-2-methylpropyl) 1-diethylphosphono-1-methylethyl nitroxide, di-t-butyl nitroxide, diphenyl nitroxide, and tert-butyl tert-amyl nitroxide.
  • 26. The method of claim 24, wherein the controlled polymerization is a variant of the RAFT polymerization, in which the trithiocarbonates TTC1 and TTC2 or the thio compounds THI1 and THI2 or the thioesters THE are used, φ
  • 27. The method of claim 24, wherein the controlled polymerization is a variant of ATRP polymerization.
  • 28. The method of claim 15, wherein radical stabilization is effected using polymer-bonded or non-polymer-bonded nitroxides of the type (NIT 1) or (NIT 2):
  • 29. The method of claim 15, wherein crosslinkers selected from the croup consisting of metal chelates, isocyanates, amines, alcohols and epoxides are added.
  • 30. The method of claim 15, wherein the polymers are crosslinked by actinic radiation.
  • 31. The method of claim 15, wherein the polymers are crosslinked by UV radiation.
  • 32. A method for mounting printing plates to printing cylinders or sleeves which comprises mounting said printer Plates with the adhesive tape of claim 1.
  • 33. The method of claim 21, wherein said initiator having a grafting activity of ε>10 is bis(4-tert-butylcyclohexyl) peroxide dicarbonate or dibenzoyl peroxide.
Priority Claims (2)
Number Date Country Kind
103 03 538.9 Jan 2003 DE national
103 14 898.1 Apr 2003 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP04/00093 1/9/2004 WO 00 10/4/2006