The present invention relates to pressure swirl atomizers, and more particularly to a pressure swirl atomizer system that has a mechanism to assist in closing an exit flow path.
Pressure swirl atomizers are used in various applications, including fuel injection systems and exhaust aftertreatment systems. Atomizers disperse fluid into a fine spray by directing fluid from tangential swirl channels into a swirl chamber and then opening a central exit orifice to allow the fluid to exit in a spray pattern. More particularly, the tangential swirl channels causes fluid entering the swirl chamber to swirl in a circular motion and increase its angular velocity as it moves toward the exit orifice. The centrifugal force generated by the swirling motion generates a low pressure zone along the central axis of the swirl chamber.
When the exit orifice is opened, exhaust gas enters the atomizer through the exit orifice and forms an air core through the exit orifice. The fluid forms a “wall” around the air core. Aerodynamic forces break the fluid wall into droplets after it exits the injector. The thickness of this fluid wall and the dimensions of the air core depend on the fluid supply pressure and on the ratio of the diameter of the swirl chamber and the diameter of the exit orifice, and these dimensions in turn control the characteristics of the spray pattern as fluid leaves the exit orifice.
A solenoid-controlled pintle opens and closes the exit orifice to allow or block fluid flow out of the atomizer. In applications where a variable flow rate is desired, the exit orifice may be opened and closed via pulse width modulation (PWM) of the pintle between the open and closed positions. When the solenoid is energized, it generates a magnetic force that pulls the pintle away from the exit orifice and toward a pole piece until the pintle seats against the pole piece. When the solenoid is de-energized, the pintle should return to the closed position and block the exit orifice. However, the pintle may stick in the open position, creating an unpredictable response delay before the exit orifice is closed again. This delay makes it difficult to obtain consistent fuel flow, especially at high duty cycles.
There is a desire for a pressure swirl atomizer having a more predictable, consistent pintle response.
A pressure swirl atomizer according to one embodiment of the invention includes a nozzle having an exit orifice and a plurality of tangential swirl channels and a pintle that is movable within a pintle bearing between a closed position that closes the exit orifice and an open position that opens the exit orifice. The atomizer also has a pole piece having a channel, and the pole piece and the pintle are separated by an air gap when the pintle is in the closed position. A space between the pintle and the pintle bearing, the air gap, and the channel together form at least a part of a return path. Fluid from the tangential swirl channels drains through the return path when the pintle is in the closed position. To open the atomizer, a solenoid generates a magnetic force when energized, attracting the pintle toward the pole piece into the open position. A check valve disposed in the return path generates a fluid back pressure when the solenoid is de-energized to push the pintle toward the closed position. The back pressure helps prevent the pintle from getting stuck in the open position.
As shown in
A solenoid 22 controls operation of the atomizer 10 by moving the pintle 12 between an open position (
When the solenoid 22 is de-energized, the pintle 12 moves away from the core 26 and closes the exit orifice 15 as shown in
The solenoid 22 may operate via pulse width modulation (PWM) control to move the pintle 12 over a selected duty cycle to vary the flow rate of the atomizer 10. The solenoid 22 may be designed to provide a quick response at low duty cycles so that the pintle 12 can be moved quickly between the open and closed positions.
A housing 30 may house at least a portion of the nozzle 16, pintle 12, pintle bearing 14, solenoid 22, and core 26 into a single unit.
The operation of the components in the atomizer 10 will now be explained in greater detail with respect to
When the pintle 12 is in the closed position, a magnetic air gap 34 forms between the pintle 12 and the core 26. This air gap 34 also forms part of the return path. In one embodiment, fluid flows through the air gap 34 into the core 26 through the recess 28 and a return channel 36. The recess 28 and return channel 36 also form part of the return path. The return path 32, 34, 36 may direct fluid to the solenoid 22 to cool it.
When the solenoid 22 is energized, the generated magnetic force pulls the pintle 12 toward the core 26 and away from the exit orifice 15. This attractive magnetic force causes the pintle 12 to contact the core 26 and close the magnetic air gap 34 between them, blocking fluid flow through the recess 28 and the channel 36 and forcing fluid to exit through the exit orifice 15 in a spray pattern. In one embodiment, the pintle 12 has a large magnetically attractive surface area to ensure that the pintle 12 responds quickly to the magnetic force.
When the solenoid 22 is de-energized again, the biasing force from the spring 27 urges the pintle 12 to the closed position. However, the large magnetically attractive surface area on the pintle 12 may cause the pintle 12 to stick in the open position or move too slowly toward the closed position if there is not enough hydraulic and/or spring force applied to the pintle 12 to force it away from the core 26.
To provide additional hydraulic pressure onto the pintle 12, a check valve 38 may be disposed in the return path to provide additional hydraulic force onto the pintle 12 to move it toward the closed position. The check valve 38 may be disposed anywhere along the return path, in any of the paths formed by the space 32 between the pintle 12 and pintle bearing 14, the air gap 34, and/or the channel 36, and either within the atomizer 10 or, as shown in
In one embodiment, the check valve 38 is a low-leak check valve that is normally closed. When the pintle 12 is in the closed position, the pressure of fluid draining from the swirl chamber 18 is higher than a threshold pressure of the check valve 38, pushing the check valve 38 open. This allows the fluid to flow past the check valve 34 along the return path 32. This fluid circulation may cool portions of the atomizer, such as the solenoid 22.
When the pintle 12 is in the open position, the check valve 34 closes because the fluid pressure in the return path 28 drops below the threshold pressure of the check valve 34 due to the blockage of the return path 28 via closure of the air gap 30 by the pintle 12. The pintle 12 starts to move toward the closed position when the solenoid 22 is de-energized, allowing some fluid to flow through the air gap 30 and into the recess 28 and channel 32. However, since the check valve 34 is still closed, fluid quickly accumulates in the return path 28 between the check valve 34 and the pintle 12, increasing the back pressure against the pintle 12. This back pressure, combined with the biasing force of the spring 27, pushes the pintle 12 toward the closed position. The additional force provided by the fluid back pressure ensures that the pintle 12 quickly and reliably moves to the closed position when the solenoid 22 is de-energized.
Thus, by incorporating a check valve 34 in the return path 32, the fluid back pressure in the return path 32 pushes against the pintle 12 and prevents the pintle 12 from sticking in the open position when the atomizer 10 is commanded to close (e.g., via de-energization of the solenoid 22).
Although the embodiment described above has a flux collector as the pintle bearing 14 and a pole piece as the core 26, those of ordinary skill in the art will understand that these elements can be switched (i.e., the pintle bearing 14 can be the flux collector and the core 28 can be the pole piece). Other modifications may also be made without departing from the scope of the invention.
While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.
This application claims the benefit of U.S. Provisional application Ser. No. 61/324,793 filed Apr. 16, 2010 entitled FUEL INJECTOR CLOSURE ASSIST, the entire disclosure of which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61324793 | Apr 2010 | US |