Claims
- 1. A control system for controlling the magnitude of the pressure of a refrigerant in the low pressure section of a refrigeration cycle, comprising compressor means for compressing said refrigerant and consequently reduce the magnitude of said pressure within said low pressure section, actuatable means effective for driving said compressor means, and circuit means operatively interconnecting said actuatable means and a source of electrical potential for at times actuating said actuatable means for causing said compressor means to be driven, said circuit means comprising first normally open electrical switch means, second normally open switch means, means responsive to the magnitude of said pressure of said refrigerant within said low pressure section for at times closing said first and second switch means, said means responsive to the magnitude of said pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical connection to supply electrical current flow from said source of electrical potential to said actuatable means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said electrical logic means comprising a silicon controlled rectifier, said silicon controlled rectifier comprising an anode cathode and gate, said anode being electrically connected to said source of electrical potential, said cathode being electrically connected to said first switch means, said gate being electrically connected to said source of electrical potential through said second switch means, and further comprising electrical resistance means, said electrical resistance means being electrically connected across said gate and cathode as to have one electrical end thereof generally between said first switch means and said silicon controlled rectifier and an other electrical end thereof generally between said silicon controlled rectifier and said second switch means.
- 2. A control system for controlling the magnitude of the pressure of a refrigerant in the low pressure section of a refrigeration cycle, comprising compressor means for compressing said refrigerant and consequently reduce the magnitude of said pressure within said low pressure section, actuatable means effective for driving said compressor means, and circuit means operatively interconnecting said actuatable means and a source of electrical potential for at times actuating said actuatable means for causing said compressor means to be driven, said circuit means comprising first normally open electrical switch means, second normally open switch means, means responsive to the magnitude of said pressure of said refrigerant within said low pressure section for at times closing said first and second switch means, said means responsive to the magnitude of said pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said actuatable means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said first switch means comprising a first movable switch member and a first stationary switch member, said second switch means comprising a second movable switch member and a second stationary switch member, said first stationary switch member being selectively adjustably positionable toward and away from said first movable switch member, and said second stationary switch member being selectively adjustably positionable toward and away from said second movable switch member.
- 3. A control system according to claim 2 wherein said means responsive to the magnitude of said pressure of said refrigerant comprises movable pressure responsive wall means, and wherein said electrical logic means is at least in part carried by said movable pressure responsive wall means.
- 4. A control system for controlling the magnitude of the pressure of a refrigerant in the low pressure section of a refrigeration cycle, comprising compressor means for compressing said refrigerant and consequently reduce the magnitude of said pressure within said low pressure section, actuatable means effective for driving said compressor means, and circuit means operatively interconnecting said actuatable means and a source of electrical potential for at times actuating said actuatable means for causing said compressor means to be driven, said circuit means comprising first normally open electrical switch means, second normally open switch means, means responsive to the magnitude of said pressure of said refrigerant within said low pressure section for at times closing said first and second switch means, said means responsive to the magnitude of said pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said actuatable means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said electrical logic means comprising a silicon controlled rectifier, said silicon controlled rectifier comprising an anode cathode and gate, said anode being electrically connected to said source of electrical potential, said cathode being electrically connected to said first switch means, said gate being electrically connected to said source of electrical potential through said second switch means, said first switch means comprising a first movable switch member and a first stationary switch member, said second switch means comprising a second movable switch member and a second stationary switch member, said first stationary switch member being selectively adjustably positionable toward and away from said first movable switch member, and said second stationary switch member being selectively adjustably positionable toward and away from said second movable switch member.
- 5. A control system according to claim 4 wherein said means responsive to the magnitude of said pressure of said refrigerant comprises pressure responsive piston means, wherein said silicon controlled rectifier is carried by said piston means for movement therewith, wherein said anode cathode and gate are movable with said piston means, and wherein said first and second movable switch members are carried by said piston means.
- 6. A control system for controlling the magnitude of the pressure of a refrigerant in the low pressure section of a refrigeration cycle, comprising compressor means for compressing said refrigerant and consequently reduce the magnitude of said pressure within said low pressure section, actuatable means effective for driving said compressor means, and circuit means operatively interconnecting said actuatable means and a source of electrical potential for at times actuating said actuatable means for causing said compressor means to be driven, said circuit means comprising first normally open electrical switch means, second normally open switch means, means responsive to the magnitude of said pressure of said refrigerant within said low pressure section for at times closing said first and second switch means, said means responsive to the magnitude of said pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said actuatable means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said electrical logic means comprising a silicon controlled rectifier, said silicon controlled rectifier comprising an anode cathode and gate, said anode being electrically connected to said source of electrical potential, said cathode being electrically connected to said first switch means, and said gate being electrically connected to said source of electrical potential through said second switch means, said means responsive to the magnitude of said pressure of said refrigerant comprising pressure responsive piston means, said silicon controlled rectifier being carried by said piston means for movement therewith, said anode cathode and gate being movable with said piston means, and said first and second movable switch members being carried by said piston means.
- 7. A control system for controlling the magnitude of the pressure of a refrigerant in the low pressure section of a refrigeration cycle, comprising compressor means for compressing said refrigerant and consequently reduce the magnitude of said pressure within said low pressure section, actuatable means effective for driving said compressor means, and circuit means operatively interconnecting said actuatable means and a source of electrical potential for at times actuating said actuatable means for causing said compressor means to be driven, said circuit means comprising first normally open electrical switch means, second normally open switch means, means responsive to the magnitude of said pressure of said refrigerant within said low pressure section for at times closing said first and second switch means, said means responsive to the magnitude of said pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said actuatable means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said means responsive to the magnitude of said pressure of said refrigerant comprising movable pressure responsive wall means, and said electrical logic means being at least in part carried by said movable pressure responsive wall means.
- 8. A control system for controlling the magnitude of the pressure of a refrigerant in the low pressure section of a refrigeration cycle, comprising compressor means for compressing said refrigerant and consequently reduce the magnitude of said pressure within said low pressure section, actuatable means effective for driving said compressor means, and circuit means operatively interconnecting said actuatable means and a source of electrical potential for at times actuating said actuatable means for causing said compressor means to be driven, said circuit means comprising first normally open electrical switch means, second normally open switch means, means responsive to the magnitude of said pressure of said refrigerant within said low pressure section for at times closing said first and second switch means, said means responsive to the magnitude of said pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said actuatable means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said electrical logic means comprising a silicon controlled rectifier, said silicon controlled rectifier comprising an anode cathode and gate, said anode being electrically connected to said source of electrical potential, said cathode being electrically connected to said first switch means, said gate being electrically connected to said source of electrical potential through said second switch means, said means responsive to the magnitude of said pressure of said refrigerant comprising movable pressure responsive wall means, said silicon controlled rectifier being carried by said movable pressure responsive wall means for movement therewith, said anode cathode and gate being movable with said movable pressure responsive wall means, and said first and second movable switch members being carried by said movable pressure responsive wall means.
- 9. A control system for controlling the magnitude of the fluid pressure of a monitored fluid, comprising first means effective for at times reducing the magnitude of said fluid pressure, second means effective for at times causing said first means to reduce the magnitude of said fluid pressure, and circuit means operatively interconnecting said second means and an associated source of electrical potential for at times causing said second means to in turn cause said first means to reduce said magnitude of said fluid pressure, said circuit means comprising first normally open electrical switch means, second normally open switch means, third means responsive to the magnitude of said fluid pressure for at times closing said first and second switch means, said third means responsive to the magnitude of said fluid pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said fluid pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said second means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed.
- 10. A control system according to claim 9 wherein said electrical logic means comprises a silicon controlled rectifier, wherein said silicon controlled rectifier comprises an anode cathode and gate, wherein said anode is electrically connected to said source of electrical potential, wherein said cathode is electrically connected to said first switch means, and wherein said gate is electrically connected to said source of electrical potential through said second switch means.
- 11. A control system for controlling the magnitude of the fluid pressure of a monitored fluid, comprising first means effective for at times reducing the magnitude of said fluid pressure, second means effective for at times causing said first means to reduce the magnitude of said fluid pressure, and circuit means operatively interconnecting said second means and an associated source of electrical potential for at times causing said second means to in turn cause said first means to reduce said magnitude of said fluid pressure, said circuit means comprising first normally open electrical switch means, second normally open switch means, third means responsive to the magnitude of said fluid pressure for at times closing said first and second switch means, said third means responsive to the magnitude of said fluid pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said fluid pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said second means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said electrical logic means comprising a silicon controlled rectifier, said silicon controlled rectifier comprising an anode cathode and gate, said anode being electrically connected to said source of electrical potential, said cathode being electrically connected to said first switch means, said gate being electrically connected to said source of electrical potential through said second switch means, and further comprising electrical resistance means, said electrical resistance means being electrically connected across said gate and cathode as to have one electrical end thereof generally between said first switch means and said silicon controlled rectifier and an other electrical end thereof generally between said silicon controlled rectifier and said second switch means.
- 12. A control system for controlling the magnitude of the fluid pressure of a monitored fluid, comprising first means effective for at times reducing the magnitude of said fluid pressure, second means effective for at times causing said first means to reduce the magnitude of said fluid pressure, and circuit means operatively interconnecting said second means and an associated source of electrical potential for at times causing said second means to in turn cause said first means to reduce said magnitude of said fluid pressure, said circuit means comprising first normally open electrical switch means, second normally open switch means, third means responsive to the magnitude of said fluid pressure for at times closing said first and second switch means, said third means responsive to the magnitude of said fluid pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said fluid pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said second means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said first switch means comprising a first movable switch member and a first stationary switch member, said second switch means comprising a second movable switch member and a second stationary switch member, and said first stationary switch member being selectively adjustably positionable toward and away from said first movable switch member.
- 13. A control system for controlling the magnitude of the fluid pressure of a monitored fluid, comprising first means effective for at times reducing the magnitude of said fluid pressure, second means effective for at times causing said first means to reduce the magnitude of said fluid pressure, and circuit means operatively interconnecting said second means and an associated source of electrical potential for at times causing said second means to in turn cause said first means to reduce said magnitude of said fluid pressure, said circuit means comprising first normally open electrical switch means, second normally open switch means, third means responsive to the magnitude of said fluid pressure for at times closing said first and second switch means, said third means responsive to the magnitude of said fluid pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said fluid pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said second means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said first switch means comprising a first movable switch member and a first stationary switch member, said second switch means comprising a second movable switch member and a second stationary switch member, said first stationary switch member being selectively adjustably positionable toward and away from said first movable switch member, and said second stationary switch member being selectively adjustably positionable toward and away from said second movable switch member.
- 14. A control system for controlling the magnitude of the fluid pressure of a monitored fluid, comprising first means effective for at times reducing the magnitude of said fluid pressure, second means effective for at times causing said first means to reduce the magnitude of said fluid pressure, and circuit means operatively interconnecting said second means and an associated source of electrical potential for at times causing said second means to in turn cause said first means to reduce said magnitude of said fluid pressure, said circuit means comprising first normally open electrical switch means, second normally open switch means, third means responsive to the magnitude of said fluid pressure for at times closing said first and second switch means, said third means responsive to the magnitude of said fluid pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said fluid pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said second means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said electrical logic means comprising a silicon controlled rectifier, said silicon controlled rectifier comprising an anode cathode and gate, said anode being electrically connected to said source of electrical potential, said cathode being electrically connected to said first switch means, said gate being electrically connected to said source of electrical potential through said second switch means, said first switch means comprising a first movable switch member and a first stationary switch member, said second switch means comprising a second movable switch member and a second stationary switch member, said first stationary switch member being selectively adjustably positionable toward and away from said first movable switch member, and said second stationary switch member being selectively adjustably positionable toward and away from said second movable switch member.
- 15. A control system according to claim 14 wherein said means responsive to the magnitude of said pressure of said refrigerant comprises pressure responsive piston means, wherein said silicon controlled rectifier is carried by said piston means for movement therewith, wherein said anode cathode and gate are movable with said piston means, and wherein said first and second movable switch members are carried by said piston means.
- 16. A control system for controlling the magnitude of the fluid pressure of a monitored fluid, comprising first means effective for at times reducing the magnitude of said fluid pressure, second means effective for at times causing said first means to reduce the magnitude of said fluid pressure, and circuit means operatively interconnecting said second means and an associated source of electrical potential for at times causing said second means to in turn cause said first means to reduce said magnitude of said fluid pressure, said circuit means comprising first normally open electrical switch means, second normally open switch means, third means responsive to the magnitude of said fluid pressure for at times closing said first and second switch means, said third means responsive to the magnitude of said fluid pressure being effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to the magnitude of said fluid pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, electrical logic means electrically connected in circuit with said first and second switch means, said electrical logic means being placed into electrical conduction to supply electrical current flow from said source of electrical potential to said second means whenever both said first and second switch means have been closed, and said electrical logic means being effective to continue in said electrical conduction even after said second switch means again becomes opened while said first switch means remains closed, said third means responsive to the magnitude of said pressure comprising movable pressure responsive wall means, and said electrical logic means being at least in part carried by said movable pressure responsive wall means.
- 17. A control system for controlling the magnitude of the fluid pressure of a monitored fluid, comprising output means at times energizable to reduce the magnitude of said fluid pressure, first electrical switch means, second electrical switch means, means responsive to said magnitude of said fluid pressure and effective to close said first switch means when said magnitude attains a first preselected relatively low value, said means responsive to said magnitude of said fluid pressure being effective to close said second switch means when said magnitude attains a second preselected relatively high value, an associated source of electrical potential, and electrical logic means electrically operatively connected in circuit with said first and second switch means, said electrical logic means being effective to cause electrical current flow from said source of electrical potential to said output means whenever both said first and second switch means have been closed, said electrical logic means also being effective to continue to cause said electrical current flow after said second switch means having been closed again becomes opened while said first switch means remains closed, said first switch means comprising a first movable switch member and a first stationary switch member, said second switch means comprising a second movable switch member and a second stationary switch member, and said first stationary switch member being selectively adjustably positionable toward and away from said first movable switch member.
Parent Case Info
This is a continuation of application Ser. No. 818,607, filed July 25, 1977, now abandoned.
US Referenced Citations (9)
Continuations (1)
|
Number |
Date |
Country |
Parent |
818607 |
Jul 1977 |
|