Construction attachment coupling systems and control systems for same are well known in the art. Safety is a primary concern for such systems and, in particular, such systems include means for preventing accidental decoupling of a bucket or other attachment as could lead to injury to those nearby. Another primary concern for such system is ease of use for operators. In many respects, safety and ease of use go hand-in-hand because a system that is easy for operators to use and understand is more likely to be used in a safe manner according to manufacturer instructions.
The present invention provides a new and improved electrical control system and/or a new and improved hydraulic control system for attachment coupling systems that enhances both safety and ease of use. While the electrical and hydraulic control systems are described herein as a combined system, each of these systems can be used independent of the other without departing from the overall scope and intent of the present invention.
In accordance with a first aspect of the present development, a hydraulic control circuit for an attachment coupling system includes an input flow path for receiving a supply of pressurized fluid, and first and second actuator flow paths for supplying fluid to respective first and second input/output locations of a first hydraulic actuator associated with an attachment coupler. A return flow path is included for supplying pressurized fluid to a reservoir. A first control valve is connected to the input flow path, the return flow path, and the first and second actuator flow paths. The first control valve is selectively positionable in at least first and second states in response to a first electrical control signal wherein: (i) in the first state, the first control valve connects the input flow path to the first actuator flow path and connects the return flow path to the second actuator flow path; and, (ii) in the second state, the first control valve connects the input flow path to the second actuator flow path and connects the return flow path to the first actuator flow path. The hydraulic control circuit further includes a pressure sensor for sensing fluid pressure supplied to an associated attachment positioning cylinder. The pressure sensor is adapted to output an electrical pressure signal that changes state when the fluid pressure supplied to the associated attachment positioning cylinder exceeds a safety threshold. An electronic control system is operatively connected to the pressure sensor and the first control valve. The electronic control system outputs the first control signal to the first control valve to change the first control valve from the first state to the second state only after the electrical pressure signal output by the pressure sensor to the electronic control system indicates that the safety threshold is satisfied.
In accordance with another aspect of the present development, a method for controlling an attachment coupling system includes pressurizing a first hydraulic actuator of an attachment quick coupler with hydraulic fluid in a first orientation to engage an attachment coupling mechanism connected to the hydraulic actuator. The method further includes sensing hydraulic pressure in a second hydraulic actuator that is used to position the attachment quick coupler. The method also includes pressurizing the first hydraulic actuator with hydraulic fluid in a second orientation that is opposite said first orientation to disengage the attachment coupling mechanism connected to the hydraulic actuator only after the hydraulic pressure in the second hydraulic actuator satisfies a threshold pressure value.
The invention comprises various components and arrangements of components, and comprises various steps and arrangements of steps, preferred embodiments of which are illustrated in the accompanying drawings that form a part hereof and wherein:
Referring now to
First and second hydraulic actuator fluid flow paths (such as drilled flow paths, hydraulic hoses/lines and/or any other suitable flow paths or conduits) SR,SE are connected to output/input fittings of the cylinder housing H1 in fluid communication with the bore B1 and communicate hydraulic fluid into and out of the bore B1 on opposite sides of the piston P1 to control the difference in pressure on opposite sides of the piston P1 and, thus, the position of the piston P1 in the bore B1. In a typical arrangement, “extension” of the piston P1 so that the rod R1 extends farther out of the housing corresponds to a “locked” condition of the coupling system; retraction of the piston P1 and rod R1 corresponds to an “unlocked” condition of the coupling system. In some quick coupler structures, the rod R1 is connected to a wedge or other lock member that selectively captures an attachment pin (or other part of the attachment) to the coupler QC depending upon extension/retraction of the rod R1 to provide locking/unlocking for the quick coupler QC. In other coupler structures, the cylinder C1 is used to spread opposed hooks of the coupler apart for attachment coupling/locking operations or draw the hooks together for attachment unlocking/decoupling operations to provide locking/unlocking operations for the quick coupler QC.
A pilot check valve PCV1 is included and is operatively connected between to the paths SR,SE to prevent flow of fluid out of the bore B1 via path SE unless the path SR is pressurized above a select pilot check threshold. This arrangement prevents the piston P1 and rod R1 from retracting unless the path SR is actively pressurized, i.e., fluid cannot flow from the bore B1 via path SE as required to retract the piston P1 and rod R1 unless the path SR is positively pressurized to open the pilot check valve PCV1 to reduce the likelihood of accidental retraction of the piston P1 and rod R1 upon the path SE being unexpectedly opened due to a broken hose or the like.
Hydraulic fluid is supplied continuously to the circuit 10 under pressure via pressure input path P from a pump (not shown) that draws from the reservoir or tank (not shown). Fluid is returned to the reservoir/tank via return path T. At least one joystick J or other actuator positioning device (e.g., levers, foot pedals, etc.) is used by an operator to control fluid flow to an attachment positioning actuator or cylinder (also referred to as a bucket cylinder) BC used to extend (roll-back) and curl a bucket or otherwise maneuver an attachment that is operatively coupled to the excavator, backhoe or other machine on which circuit 10 is employed. As is generally known, the control device J outputs a varying pilot pressure of hydraulic fluid in a pilot pressure path PP depending upon its position as maneuvered by an operator to control both direction and speed of motion of the bucket cylinder BC. This pilot pressure in path PP is input to a bucket cylinder control circuit BCCC that drives the bucket cylinder BC. As is also known to those of ordinary skill in the art, extension of the bucket cylinder causes curling of the bucket or other attachment, while retraction of the bucket cylinder causes extension or roll-back of the bucket or other attachment. The pump typically pressurizes the pressure input path P to an input pressure of 4000-6000 pounds per square inch (psi). A pressure control vale V1 receives the path P as input and outputs hydralic fluid at a select operating pressure, preferably in the range of about 3000 psi-3500 psi (but this can vary) in the path SE.
The paths SR,SE are each in communication with a first electro-mechanical fluid flow control valve such as solenoid valve SV2. In a normal, non-actuated condition, the solenoid valve SV2 connects the path SR to the return path T and connects the path SE to the output of pressure reducing valve V1. As such, in this normal state, the hydraulic fluid output via valve V1 at a select operating pressure is communicated through solenoid valve SV2 and path SE to the extend side of the piston P1. At the same time, the path SR is in communication with the return path T via solenoid valve SV2 so that the retract side of the piston P1 can exhaust to the tank. Therefore, in this state, the pressure difference in paths SR,SE will result in the extension of the piston P1 and rod R1 which, as noted, typically corresponds to a “locked” condition for an associated locking mechanism LOCK1 that is operably coupled to or otherwise controlled by position of rod R1. This continuous pressurizing of the path SE is a safety consideration owing to the fact that the coupling system lock LOCK1 actuated by the cylinder C1 is configured to be engaged (and thus operatively retain a bucket or other attachment) when the piston P1 and rod R1 are extended.
Retraction of the piston P1 to disengage the associated lock LOCK1 as required to de-couple a bucket or other attachment requires sufficient pressurization of the path SR to move the piston P1 and also to open the pilot check valve PCV1 to allow exhaust flow from the bore B1 in path SE. In general, this state is established by energizing a coil of the solenoid valve SV2 so that the solenoid valve is actuated, i.e., the spool thereof is “shifted,” to establish cross-flow between the paths SR and SE which, in turn, causes the operating flow output from the pressure control valve V1 to be directed to the path SR instead of the path SE and causes the path SE to be connected in fluid communication to the return path T. This actuated or shifted or energized state of the solenoid valve SV2 leads to retraction of the piston P1 and rod R1 and unlocking of an associated lock connected thereto as required for attachment decoupling operations.
Because retraction of the piston P1 and rod R1 connected thereto results in retraction or other disengagement of a lock LOCK1 operatively connected to the rod R1 which, in turn, allows for de-coupling of an associated attachment such as a bucket, blade or the like from the quick coupler QC of which the cylinder C1 is a part, it is important to ensure that the path SR be pressurized for retraction of the piston P1 and opening of the pilot check valve PCV1 and that the path SE flow to the reservoir tank via return path T only upon at least both of the following two conditions being met:
(i) the pressure in the input path P must be over a select maximum “trigger” value for a sustained period, wherein the trigger value is set to a select percentage of the “over-relief” pressure that occurs when the bucket or other attachment is physically unable to pivot further in at least one direction under maximum available hydraulic pressure (i.e., the attachment is in either the full-curl or full-extend position); and,
(ii) predetermined and sustained operator manipulation of a control device (typically a joystick) J in a manner that indicates the operator has intentionally moved (or attempted to move) the bucket or other attachment to the required attachment decoupling position (i.e., full-curl or full-extend).
Satisfaction of the first condition (i) of a select trigger pressure indicates that the bucket or other associated attachment to be decoupled is likely in a full-curl or full-extend (roll-back) position as required for safe decoupling. Satisfaction of the second condition (ii) indicates that the operator has intentionally moved the bucket or other attachment to the required decoupling position (full-curl or full-extend as appropriate) and that the satisfaction of the first condition (i.e., the select trigger pressure) has not resulted from another condition as could occur during certain operative conditions, e.g., digging in a rocky area or from use of other segments of the excavator or other machine. Thus, with both conditions (i) and (ii) satisfied, it is known that the attachment has been moved intentionally to the required decoupling position, which can be either full-curl or full-extend by extending and retracting the bucket cylinder, respectively.
To determine if the first condition is satisfied, i.e., (i) presence of the select trigger pressure in input path P, the circuit 10 comprises a first pressure switch PS4 in communication with the input path P. When the pressure in input path P meets or exceeds the select trigger pressure the first pressure switch PS4 is actuated. In the illustrated embodiment, the first pressure switch PS4 is a normally open switch and closes when the pressure in input path P reaches or exceeds the select trigger pressure. In one embodiment, the trigger is set to 85%-90% of the over-relief pressure for a particular machine. The pressure magnitude required to actuate first pressure switch PS4 can be fixed or adjustable.
To determine if the second condition (ii) is satisfied, i.e., to determine if there exists predetermined and sustained operator manipulation of a joystick J or other control device in a manner that indicates the operator has intentionally moved (or attempted to move) the bucket or other attachment to the required decoupling position, a second pressure switch PS1 is provided as part of circuit 10 (see
The first and second pressure switches PS4,PS1 form a part of both the hydraulic circuit 10 and the electrical control circuit 10′ (see
The circuit 10′ of
When the switch SW2 is opened, the coil of the solenoid valve SV2 is de-energized due to the open circuit relative to voltage source V+. When the switch SW2 is closed, current flows through an indicator lamp or LED or the like L1 located in the operator'scab so that the operator receives a visual indication that the switch SW2 is closed. Closing of the switch SW2 also results in current flow through an audible buzzer/beeper B2 located inside the operator's cab so that the operator receives an audible indication that the switch SW2 is closed.
Furthermore, when the switch SW2 is closed, current flows to a timer TD1 and through relay RE1 to a beeper/buzzer B1 located outside the operator's cab to warn workers and others that the switch SW2 is closed (i.e., that a de-coupling operation is being carried out).
After a select delay (e.g., 5 sec.) according to the parameters of timer TD1, the timer TD1 latches so that a switching current also flows to relay RE1 and causes relay to switch from a first conductive state (as shown with terminals 5-1 connected) to a second conductive state (in which terminals 5-3 are connected). In the second conductive state of relay RE1, the outside beeper B1 is de-energized. If, at the same time, the first and second hydraulic pressure switches PS4,PS1 are closed (i.e., conditions (i) and (ii) above are satisfied), the circuit between the voltage source V+ and ground is complete and the coil of solenoid valve SV2 is energized to actuate or shift the solenoid valve SV2 as described above in relation to
The first and second pressure switches PS4,PS1 form a part of both the hydraulic circuit 10 and the electrical control circuit 10′. The state of the switches PS4,PS1 is used to control initial actuation of the solenoid valve SV2 but are then effectively removed from the circuit by relay RE2 to allow for coupling/decoupling operations. The electrical circuit 10′ is constructed using hard-wired components and/or using a printed circuit. The components can be electro-mechanical devices or solid-state devices, microprocessors and/or any other suitable and convenient means and combinations of same.
Those of ordinary skill in the art will recognize from the foregoing that the sound of the outside warning buzzer/beeper B1 combined with the delay of, e.g., 5 sec., provides those located near the excavator or other machine with sufficient warning of attachment decoupling prior to the coil of the solenoid valve SV2 being energized to initiate decoupling operations.
Further discussion of the circuit portion 10 for controlling cylinder C1 is not provided here (see discussion of circuit 10 above in relation to
The cylinders C1,C2 are typically structurally similar or identical and, thus, the cylinder C2 comprises a housing H2, bore B2, piston P2 and rod R2. As discussed above in relation to the cylinder C1, extension of piston P2 and rod R2 so that the rod extends out of the housing H2 a greater amount typically corresponds to a “locked” condition for the second locking mechanism connected thereto; retraction of the piston P2 and rod R2 so that the length of rod R2 extending out of the cylinder C2 is shortened corresponds to an “unlocked” condition of the second locking mechanism connected thereto.
In addition to the circuit portion 10, the circuit 210 further comprises a second pilot check valve PCV2 and a second electro-mechanical fluid flow control valve such as a solenoid valve SV3. Hydraulic actuator fluid flow paths (such as drilled flow paths, hydraulic hoses/lines and/or any other suitable flow paths of conduits) LR,LE are connected to the cylinder input/output fittings of housing H2 in fluid communication with the bore B2 and communicate hydraulic fluid into and out of the bore B2 on opposite sides of the piston P2 to control the difference in pressure on opposite sides of the piston P2 and, thus, the position of the piston P2 in the bore B2.
A pilot check valve PCV2 is included and is operatively connected between to the paths LR,LE to prevent flow of fluid out of the bore B2 via path LE unless the path LR is pressurized above a select pilot check threshold. This arrangement prevents the piston P2 and rod R2 from retracting unless the path LR is actively pressurized, i.e., fluid cannot flow from the bore B2 via path LE as required to retract the piston P2 and rod R2 unless the path LR is positively pressurized to open the pilot check valve PCV2 to reduce the likelihood of accidental retraction of the piston and rod upon the path LE being unexpectedly opened due to a broken hose or the like.
As noted above, hydraulic fluid is supplied continuously to the circuit 210 under pressure via pressure input path P and a pressure control valve V1 receives the path P as input and outputs hydraulic fluid at a select operating pressure, in the range of about 3000 psi-3500 psi or any other desired pressure range. Like path SE, the path LE is also in communication with the output of the valve V1 to receive the operating flow therefrom.
The paths LR,LE are each in communication with the solenoid valve SV3. In a normal, non-actuated or non-energized condition, the solenoid valve SV3 connects the path LR to the return path T and connects the path LE to the output of pressure reducing valve V1. As such, in this state, the hydraulic fluid output via valve V1 at a select operating pressure is communicated through solenoid valve SV3 and path LE to the extend side of the piston P2. At the same time, the path SR is in communication with the return path T via solenoid valve SV3 so that the retract side of the piston P2 can exhaust to the reservoir tank via path T. In this state, the pressure difference in paths LR,LE will result in the extension of the piston P2 and rod R2 which, as noted, typically corresponds to a “locked” condition for an associated locking mechanism that is operably coupled to or otherwise controlled by position of rod. This continuous pressurizing of the path LE is another safety consideration owing to the fact that the coupling system lock actuated by the cylinder C2 is configured to be engaged (and thus operatively retain a bucket or other attachment) when the piston P2 and rod R2 are extended.
Retraction of the piston P2 to disengage the associated lock as required to release a bucket or other attachment requires sufficient pressurization of the path LR to move the piston P2 and also to open the second pilot check valve PCV2 to allow exhaust flow from the bore B2 in path LE. In general, this state is established by energizing the solenoid valve SV3 which, when energized or actuated, i.e., when the spool thereof is “shifted,” establishes cross-flow between the paths LR and LE so that the operating flow output from the pressure control valve V1 is directed to the path LR instead of the path LE and so that the path LE is connected in fluid communication to the return path T. This, in turn, leads to retraction of the piston P2 and rod R2 and unlocking of an associated lock connected thereto as required for attachment decoupling operations.
Because retraction of the piston P2 and rod R2 results in retraction or other opening of a lock operatively connected to the rod which, in turn, allows for de-coupling of an associated attachment such as a bucket, blade or the like, it is important to ensure that the path LR is pressurized for retraction of the piston P2 and opening of the pilot check valve PCV2 and that the path LE flows to the reservoir tank via return path T only upon both of the following two conditions being met for the reasons discussed above:
(i) the pressure in the input path P must be over a select maximum “trigger” value for a sustained period, wherein the trigger value is a select percentage of the over-relief pressure that occurs when the bucket or other attachment is physically unable to pivot further in at least one direction under maximum available hydraulic pressure (i.e., the attachment is in either the full-curl or full-extend position); and,
(ii) predetermined and sustained operator manipulation of a control device (typically a joystick) J in a manner that indicates the operator has intentionally moved (or attempted to move) the bucket or other attachment to the required attachment decoupling position (i.e., full-curl or full-extend).
The pressure switches PS4,PS1 (see also
As shown in
The switch SW1 is normally in the “lock” position so that when the switch SW2 is closed by an operator to initiate decoupling operations, current flows through an indicator lamp or LED or the like L2 located in the operator's cab so that the operator receives a visual indication that the switch SW2 is closed. Closing of the switch SW2 also results in current flow through an audible buzzer/beeper B2 located inside the operator'scab so that the operator receives an audible indication that the switch SW2 is closed.
If the pressure switches PS4,PS1 are closed (i.e., if conditions (i) and (ii) above are met) closing of switch SW2 results in current flow through the coil of solenoid valve SV3 to energize the solenoid valve SV3 and actuate or shift same. This results in retraction of piston P2 and rod R2 of cylinder C2 owing to the establishment of cross-flow in the paths LE,LR as described above. Current flow through coil of valve SV3 acts as a switching current to relay RE3 and causes same to switch from a first, normal conductive state as shown, where a current path between terminals 5-1 is provided, to a second conductive state where a current path between terminals 5-3 is provided. In the second conductive state, relay RE3 provides a bypass around pressure switches PS1,PS4 for current flow through coil of valve SV3 to ground. As such, when relay RE3 is in its second conductive state, pressure switches PS1,PS4 are effectively removed from the circuit 210′ and do not affect current flow even if one or both subsequently open as required for coupling/decoupling operations. Valve SV3 will be actuated to maintain rod and piston R2,P2 of cylinder C2 in a retracted condition until an operator opens switch SW2 or moves switch SW1 to “unlock.” This ensures that a lock controlled by cylinder C2 will remain unlocked for a sufficient time as needed to complete coupling/decoupling operations.
After an operator has completed a decoupling operation with respect to a lock controlled by the cylinder C2 by closing switch SW2 as just described, the operator will desire to complete a second decoupling operation with respect to a lock controlled by the cylinder C1. As such, the operator will actuate switch SW1 to switch same to the “unlock” position. This results in the circuit to switch SW2 and coil of solenoid SW3 being opened. Current through coil of valve SV3 is interrupted and relay RE3 resets to its first conductive state. At the same time, current flows to a visual indicator L1 such as a lamp or LED or the like to indicate that the switch SW1 has been moved to the “unlock” position. When the switch SW1 is set to “unlock” current flows via bridge BR1 to inside beeper B2 to provide an audible signal to an operator in the machine cab. Also, with switch SW1 set to “unlock” current flows to the timer TD1 and through relay RE1 to a beeper/buzzer B1 located outside the operator's cab to warn workers and others that an attachment de-coupling operation is being carried out.
After a select delay (e.g., 5 sec.) the timer TD1 latches so that a switching current also flows to relay RE1 and causes relay to switch from a first conductive state (as shown with terminals 5-1 connected) to a second conductive state (in which terminals 5-3 are connected). In the second conductive state of relay RE1, the outside beeper B1 is de-energized. If, at the same time, the first and second hydraulic pressure switches PS4,PS1 are closed (i.e., conditions (i) and (ii) above are satisfied), the circuit between the voltage source V+ and ground is complete and the coil of solenoid valve SV2 is energized to actuate or shift the solenoid valve SV2 as described above in relation to
The diode bridge BR1 is provided as a circuit protection device to prevent damage to the lamps L1,L2 and other circuit components, and also prevents current flow from switch SW2 to components located upstream from the bridge BR1.
In a typical de-coupling operation, an operator will move the associated attachment to the required de-coupling position such as full-curl or full-extend using a joystick or other control device. This, results in an “over-relief” pressure sufficient to close pressure switch PS4. If the operator maintains the joystick J or other control device in the fully displaced or other select position that resulted in movement of the attachment to the de-coupling position, the pressure in pilot path PP will close switch PS1. The operator then activates switch SW2 to energize the coil of solenoid valve SV3 and retract piston P2 and rod R2 to allow the second attachment locking mechanism to be opened so that a control link can be de-coupled and moved away from the attachment so as not to be inadvertently re-coupled. The operator then moves switch SW1 to the “unlock” position so that the coil of solenoid SV2 is energized to retract piston P1 and rod R1 of cylinder C1 to open a first lock associated therewith after the above-described delay/warning sequence is carried out. Once the lock controlled by the first cylinder C1 is opened, the arm or dipper stick of the machine is moved away from the attachment. It is noted that upon switch SW1 being moved to the “unlock” position, the lock associated with the cylinder C2 and machine control link will automatically re-engage, but the machine control link will have already been moved out of a coupling position by the operator so that re-coupling of the attachment to the control link will not occur.
Coupling operations are performed in the opposite sequence as will be readily apparent to those of ordinary skill in the art. In general, the cylinder C1 is first retracted via operation of switch SW1 to allow for coupling an attachment to the arm or dipper stick. The switch SW1 is then moved to “lock” so that the piston and rod P1,R1 of cylinder C1 are extended to capture the attachment to the arm or stick by way of an associated lock controlled by the cylinder C1. The switch SW2 is then actuated to retract piston and rod P2,R2 of cylinder C2 to allow the attachment to be coupled to a control link. Once the attachment is located as desired, the switch SW2 is opened so that the piston and rod P2,R2 extend to capture the attachment to the link by way of an associated locking mechanism controlled by cylinder C2.
With brief reference to
More particularly, a solenoid valve SV2 is provided in communication with a drain line D of pressure reducing valve V2. Valve SV2 normally allows relatively unrestricted flow of drain line D to the reservoir via path T. When valve SV2 is energized, it acts as a check valve to block flow of drain line D therethrough. As such, when valve SV2 is energized, drain line D can flow to path T and reservoir only through a pressure relief valve V3 when pressure in drain path D exceeds a select threshold. Therefore, when valve SV2 is energized, flow through drain line D is significantly restricted and, thus, the pressure drop across valve V2 is lessened or eliminated so that pressure in path P downstream from valve V2 (at valve SV1) is boosted.
When the switch SW2 is closed, current flows to a timer TD1 and through relay RE1 to a beeper/buzzer B1 located outside the operator's cab to warn workers and others that the switch SW2 is closed (i.e., that a de-coupling operation is being carried out).
After a select delay (e.g., 5 sec.) according to the parameters of timer TD1, the timer TD1 latches so that a switching current also flows to relay RE1 and causes relay to switch from a first conductive state (as shown with terminals 5-1 connected) to a second conductive state (in which terminals 5-3 are connected). In the second conductive state of relay RE1, the outside beeper B1 is de-energized. If, at the same time, the first and second hydraulic pressure switches PS4,PS1 are closed (i.e., conditions (i) and (ii) above are satisfied), the circuit between the voltage source V+ and ground is complete and the coil of solenoid valve SV1 is energized to actuate or shift the solenoid valve SV1 as described above in relation to
When coil of valve SV1 is energized, current also flows to coil of valve SV2 to energize same via second timer TD2. As such, valve SV2 is energized to provide the above-described hydraulic pressure boost in path P downstream from pressure reducing valve V2. After a select delay according to timer TD2, e.g., 2 seconds, timer TD2 opens the circuit upstream from coil of valve SV2 so that valve SV2 is deenergized and so that the pressure boost in circuit 310 is eliminated.
When the operator opens switch SW2, current flow through coil of valve SV1 ceases so that the valve SV1 returns to its normal state and so that relay RE2 resets.
As noted above, the actuator HA can sometimes become stuck so that it resists reverse movement when valve SV1 is energized. Accordingly, circuit 410 includes a pressure boost feature to overcome this potential problem. More particularly, a poppet valve SV2 is provided in communication with a drain line D of pressure reducing valve V1. Poppet valve SV2 normally allows flow of drain line D to the reservoir via path T. When poppet valve SV2 is actuated/energized, the spool thereof is shifted to a position where the poppet valve acts as a check valve to block flow of drain line D therethrough. As such, when poppet valve SV2 is energized, drain line D can flow to path T and reservoir only through a sequence valve V3 when pressure in drain path D exceeds a select threshold. Therefore, when poppet valve SV2 is energized, flow through drain line D is significantly restricted and, thus, the pressure drop across valve V1 is lessened or eliminated so that pressure in path P downstream from valve V1 (at valve SV1) is boosted.
The audible buzzers/beepers B1,B2 can be provided by any suitable audible speaker device. In one preferred embodiment, the output of buzzers/beepers B1,B2 increases in volume as ambient noise increases and decreases as ambient noise decreases. Suitable buzzers/beepers are available from ECCO (www.eccolink.com) under various trademarks including SMART ALARM®.
While the preferred embodiments disclosed herein have been described primarily with reference to hydraulic cylinders, those of ordinary skill in the art will recognize that any other hydraulic actuator such as a motor, jackscrew or the like can be substituted for either or both of the cylinders C1,C2 without departing from the overall scope and intent of the present invention. It is not intended that the invention be limited for use with hydraulic cylinders or any other particular type of hydraulic actuator.
Of course, the electrical circuits and/or any portion of same described herein can also be implemented by solid-state devices and using micro controllers, software and/or other means to accomplish the functions described above. It is not intended that the invention be limited to the particular components shown herein. For example, the pressure sensing switches PS1,PS4 can each comprises a pressure sensor electrically connected to an electronic control circuit that output various control signals in response to the sensed pressure to control the flow of current through the coils of the various solenoid valves SV2,SV3 described above. The terms “switch” and “relay” are intended to encompass both mechanical switches and relays as well as electronic devices for selective conductivity of electrical current based upon manual input, in the case of switches, and electrical input, in the case of relays. Devices such as transistors and silicone controlled rectifiers (SCR's) are examples of devices that can be used as switches and relays within the scope of the present invention.
As shown in
The hydraulic circuit 210 can be implemented in a similar fashion as shown in
As shown, the electronic control system 500 comprises a control box 502 that is connected to a source of DC power Vs. As shown, the control box 502 is also operatively connected to the first and second pressure switches PS4,PS1, the first solenoid control valve SV2 (and also the second solenoid control valve SV3 for the circuit 210), and the external horn/buzzer/alarm B1 (the internal alarm B2 is typically provided within the control box 502 (see
The electronic control system 500 comprising the control box 502 is shown in more detail in
Based upon the input received, the microcontroller 510 provides output electrical signals to drive the status LED or other light L1 (and also the status LED or other light L2 when controlling the circuit 210), the external horn/buzzer B1, the internal alarm B2 and the first solenoid control valve SV2 of the circuit 10 or both the first and second solenoid control valves SV2,SV3 of the circuit 210 (note that the solenoid valves SV2,SV3 are separately and individually controlled by the microcontroller 510).
The microcontroller 510 drives the status LED's L1,L2 to light these indicators as described above in relation to
As noted, the microcontroller 510 provides the electrical output signals to drive the external and internal alarms B1,B2. In particular, the control box 502 comprises external and internal alarm switches or contacts 520,522 that are operatively connected to the microcontroller 510 and controlled by same. The contacts 520,522 are preferably solid state switches but alternatively can be mechanical contacts. To drive the alarms B1,B2, the microcontroller 510 operates the switches/contacts 520,522 to connect the buzzer/horn of the alarm B1,B2 to the voltage source Vs. In one embodiment, the microcontroller 510 is programmed to detect if the internal alarm B2 is inoperative due to a broken/cut wire in the circuit connecting the horn/buzzer B2 to the voltage source due to tampering or other cause. In particular, when the microcontroller activates the internal alarm B2 using the switch/contacts 522, the microcontroller also detects if current then flows through the circuit connecting the internal alarm B2 to the voltage source Vs. The absence of such current flow indicates an inoperative alarm B2. In one embodiment, as still another safety system, the microcontroller 510 is programmed to disable energization/actuation of either or both of the first and second solenoid control valves SV2,SV3 if the internal alarm B2 is deemed inoperative as just described.
The first solenoid control valve SV2 (and also the second solenoid control valve SV3 for the circuit 210) are selectively energized/actuated by the microcontroller 510 through mechanical relay contact(s) 530 and/or a solid state contact/switch(es) 532 (each solenoid control valve SV2,SV3 is controlled by the microcontroller 510 through a distinct contact 530 and/or switch 532 so as to be separately and individually controllable relative to the other solenoid control valve). As noted, the pressure switches PS4,PS1 and one or both of the user input switches SW1,SW2 provide input signals to the microcontroller 510. The microcontroller 510 is programmed to operate the first and second solenoid control valves SV2,SV3 in response to the state of the pressure switches PS4,PS1 and the user input switches SW1,SW2 in the same manner as described above with reference to the electrical circuit 10′ of
In a similar manner, as also noted above, the microcontroller 510 is preferably also programmed to require that the user input switches SW1,SW2 be closed for a select continuous duration (e.g., 1 second) before the switch is deemed closed by the microcontroller in order for the solenoid control valve SV2 (and also SV3 for the circuit 210) to be energized/actuated for unlocking of the lock LOCK1 (and also the lock LOCK2 for the circuit 210). For both hydraulic circuits 10,210, the microcontroller 510 is also programmed to provide a 5 second or other select delay before energizing/actuating the solenoid control valve SV2 which controls the only or main (stick) lock LOCK1, during which delay period the microcontroller activates the external and internal alarms B1,B2 and the status light L1 to warn an operator and those nearby that an attachment decoupling operation is about to occur (for the dual lock circuit 210, when the secondary (link) lock LOCK2 is being unlocked by an operator using the switch SW2, only the internal alarm B2 and internal status light L2 are activated and there is no delay before the solenoid SV3 is energized/actuated). In terms of hydraulic fluid flow, the hydraulic circuits 10,210 function otherwise exactly as described above in connection with
The invention has been described with reference the preferred embodiments. Modifications and alterations will occur to those of ordinary skill in the art, and it is intended that the invention be construed as including all such modifications and alterations.
This application is a continuation-in-part of U.S. application Ser. No. 10/770,316 filed Feb. 2, 2004, now U.S. Pat. No. 7,047,866 which claims benefit of the filing date of U.S. provisional patent application Ser. No. 60/443,942 filed Jan. 31, 2003 and U.S. provisional patent application Ser. No. 60/496,509 filed Aug. 20, 2003, and these prior applications are each hereby expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4850790 | Johnson et al. | Jul 1989 | A |
4953592 | Takahashi et al. | Sep 1990 | A |
5147173 | Fauber et al. | Sep 1992 | A |
5966850 | Horton | Oct 1999 | A |
6266960 | Bibb et al. | Jul 2001 | B1 |
6502600 | Ennemark et al. | Jan 2003 | B2 |
6964122 | Cunningham et al. | Nov 2005 | B2 |
7047866 | Fatemi et al. | May 2006 | B2 |
20030204972 | Cunningham et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
1 318 242 | Jun 2003 | EP |
Number | Date | Country | |
---|---|---|---|
20070130932 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
60443942 | Jan 2003 | US | |
60496509 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10770316 | Feb 2004 | US |
Child | 11438554 | US |