The invention relates to pressure tank, in particular to a hydraulic accumulator, with a resilient separating element which can be moved with deformation and which separates a space in the tank for a first, in particular gaseous working medium, from a space for a second working medium, in particular a fluid, and which defines a domed main separating plane which extends from an annular edge.
A pressure tank of this type in the form of a hydraulic accumulator is disclosed in DE 28 52 912 A1. The resilient separating element which consists of a rubber-like material (synthetic rubber, such as acrylic nitrile-butadiene rubber), in the known hydraulic accumulator forms a membrane which can be moved by deformation and which separates the gas side from the liquid side in the accumulator housing. Two main demands must be imposed on the operating behavior of hydraulic accumulators with these membranes which can be moved by deformation. On the one hand, the impermeability of the membrane must be ensured to prevent gas diffusion. On the other hand, corresponding mechanical properties of the membrane are necessary, especially ease of movement and high cyclic bending strength which are maintained even under the influence of corrosive media.
In the aforementioned, known hydraulic accumulator these requirements are only partially satisfied. In order to improve the impermeability of the rubber-like membrane, in the known accumulator there are annular bead-like elevations which project out of the main separating plane in tight succession. Because the elevations increase the average wall density, diffusion tightness is in fact improved, but the significant increase of wall thickness leads to considerable stiffening and accordingly to a deterioration of mobility.
With respect to this prior art, the object of the invention is to make available a pressure tank, in particular a hydraulic accumulator, that is characterized by much improved operating behavior in comparison.
According to the invention, this object is achieved by a pressure tank which has the features of claim 1 in its entirety.
In that, according to the invention, in the pressure tank there is a separating element which is produced from a substance which has a fluoroplastic material or consists preferably entirely of fluoroplastic material, on the one hand outstanding diffusion tightness is ensured, while on the other hand a separating element is provided which has mechanical properties that are optimum for use as a membrane in hydraulic accumulators, such as extreme cyclic bending strength. Therefore, very small wall thicknesses can be used; this leads to the desired ease of movement of the membrane. Based on the resulting good response behavior, the pressure tank is therefore especially well-suited for use as a pulsation damper.
Polytetrafluoroethylene has been found to be an especially suitable material.
Polytetrafluoroethylene (PTFE) due to its very high melt viscosity cannot be plastically molded, and the desired molded article from this material is cold pressed from powdered raw material with 200 to 400 bar and is sintered unpressurized at 370° to 380°. If films are to be obtained they are generally peeled off solid cylindrical blocks. Polytetrafluoroethylene therefore is commercially available in general in the form of rigid solid bodies such as slabs, rods, tubes, etc. For one with average skill in the art in the field of membrane technology it is surprising that he can nevertheless obtain separating elements which are produced in whole or in part from polytetrafluoroethylene material and which have high mobility such that they can even assume the function of a flexible rolling membrane.
Since PTFE materials can moreover have especially good chemical resistance, the pressure tank according to the invention is also suitable for use in the presence of chemically corrosive media.
In advantageous embodiments the separating element defines a domed main separating plane on whose side, which lies inside relative to the dome, annular bead-like elevations are made projecting. By using a membrane which is domed in this way, in the pressure tank a separating wall with a comparatively large area is available which, with ease of deformation, can effect a comparatively large change of volume of the bordering working spaces in the pressure tank.
In preferred embodiments, succeeding elevations are separated from one another by flat wall sections which extend along the main separating plane. Therefore, between adjacent elevations there is one free space at a time which is available for relative movements of adjacent elevations so that without annular beads which border one another mutually supporting one another and stiffening the structure, the separating element can undergo deformation as a rolling membrane.
Preferably, the peaks of the annular bead-like elevations have a round dome so that notch effects are avoided.
In especially advantageous embodiments the annular bead-like elevations are formed by folds which are open on the outer side and form annular groove-like depressions in the main separating plane here. According to the height of the folds, in a membrane which is made in this way, similarly to the case of a bellows, an especially great length of the material strip which can be moved is available in order to roll up or pull out the membrane.
Preferably, the arrangement in this instance is made such that the height of at least one fold measured from the open end to the peak of the folds along its vertical axis is different relative to the height of other folds.
As has been found, especially good mechanical properties are obtained when the first fold nearest the annular edge has a smaller height than the other adjoining folds.
In this respect, it is also advantageous if the wall section which extends from the annular edge to the nearest first fold has a wall thickness which on the annular edge has the largest value and decreases toward the first fold to the value of the wall thickness of the wall sections between the folds. The edge thickening formed in this way, without adversely affecting the resilience of the remaining membrane, promotes the clamping of the membrane on the assigned housing element of the pressure tank and the formation of a seal connection at the clamping site.
The invention is explained in detail below using the drawings.
Of the exemplary embodiment of the pressure tank according to the invention in the form of a hydraulic accumulator,
As can likewise be recognized from
As is likewise apparent from
In this example, the annular bead-like elevations projecting on the inside of the membrane 1 are formed by folds 17 and 19, as a result of which especially easy mobility for rolling up the membrane results. But there could also be annular bead-shaped elevations made as solid bodies. Unfilled PTFE materials can be used, or those with a filler and/or filler combinations as can be provided conventionally for PTFE materials; for example, when extreme temperature resistance or other special properties are desirable. Glass fiber materials, carbon, or metallic fillers can be considered, among other materials.
Semifinished articles of PTFE materials are available in many forms, for example, films peeled off blocks, solid bars, round blanks, and the like. Based on the mechanical properties, finished products, such as the rolling membrane used in the pressure tank according to the invention, can be produced by cutting from molded bodies; these bodies for their part are pressed and sintered from powdered raw material. In particular, for thin-walled articles, however, shaping by blow molding of a PTFE dispersion before sintering is possible. If the spherical membrane shape shown in
The indicated polytetrafluoroethylene material as a fluoroplastic material can comprise both pure PTFE and also modified PTFE and can include both unfilled PTFE and also PTFE compounds. For a modified PTFE material, fillers such as bronze, carbon dust, MoS2, as well as glass fiber and carbon fiber materials are possible. In addition to PTFE, as other fluoroplastic materials the following can be used: ethylene tetrafluoroethylene (ETFE), ethylene chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene copolymer (PCTFE), perfluoroalkoxy copolymer (PFA), polyvinylidene fluoride (PVDF) and tetrafluoroethylene perfluoropropylene (FEP).
Number | Date | Country | Kind |
---|---|---|---|
10 2007 003 724.6 | Jan 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/010500 | 12/4/2007 | WO | 00 | 6/30/2009 |