The present invention pertains generally to interventional medical devices. More particularly, the present invention pertains to cryo-catheters that are used to ablate tissue in the vasculature of a patient. The present invention is particularly, but not exclusively useful as a device and method for measuring the tip temperature at the distal end of a cryo-catheter and using the temperature data to control, as necessary, the input pressure of the fluid refrigerant.
Catheter ablation procedures have been clinically available for many years. The typical procedure involves passing radiofrequency (RF) electrical energy through a catheter, thereby heating and subsequently cauterizing or burning the tissue. Recently it has become apparent that RF energy is not ideal for producing the larger lesions needed to treat complex arrhythmias such as atrial fibrillation. With larger lesions, the standard approach of using RF energy may cause serious safety concerns such as pulmonary vein stenosis, clots and even stroke. Cryoablation, on the other hand, helps to eliminate many of the problems associated with RF and other heat-related therapies. Advantages of cryoablation may include: reduced pain for the patient during the procedure; reduced risk of catheter movement during the procedure; reduced procedure time; and non-destructive mapping at the source of the arrhythmia.
With a cryoablation procedure, very low temperatures need to be generated at the distal end of the cryo-catheter. Furthermore, these temperatures must be confined to the area where tissue is to be cryo-ablated. Because cryoablation typically requires temperatures below about minus eighty-four degrees Centigrade (−84° C.), high thermally conductive materials (e.g. copper) are typically used in the manufacture of a cryo-catheter. More specifically, such materials are used for the tip at the distal end of a cryo-catheter. Consequently, the thermal conductivity for a cryoablation procedure is effectively controlled by the relatively lower conductivity of the tissue to be ablated. Thus, it can be appreciated that the local temperature gradient between the tissue and the cryo-catheter is a control variable of significant importance. It is desirable, therefore, to have cryo-catheter temperatures at the operational site that are as low as possible.
A principle of thermodynamics provides that a substantial amount of heat transfer in a substance can result without any measurable change of temperature. Specifically, this phenomenon involves the transfer of so-called “latent heat”, and occurs wherever a substance, such as a fluid refrigerant, changes state. By definition, “latent heat” is the heat which is required to change the state of a unit mass of a substance from a solid to a liquid, or from a liquid to a gas, without a measurable change of temperature. Insofar as cryo-catheters are concerned, due to their requirement for low operational temperatures, it is desirable to obtain the additional refrigeration potential that results during the transfer of latent heat. In the case of a fluid refrigerant, such as nitrous oxide (N2O), it can be said that prior to a change in state from a liquid to a gas, the liquid refrigerant is “refrigerant in excess”. More specifically, for a defined system, while the fluid refrigerant is still in its liquid state, the latent heat required for vaporization is available to provide for an excess of refrigeration potential. On the other hand, after the fluid refrigerant begins to boil (i.e. change state from liquid to gas) the gas refrigerant is “refrigerant limited”.
For a cryoablation catheter having a coaxial supply tube and capillary tube, extending distally from the supply tube, wherein both tubes have known lengths and known lumen diameters, it is possible to plot a curve of tip temperature (“Tt”) as a function of working pressure (“pw”). In this case, the working pressure “pw” is the pressure of the fluid refrigerant as it is introduced into the supply tube for transfer into the capillary tube, and the tip temperature “Tt” is the temperature at the distal end of the capillary tube. Given an adequate working pressure “pw” from the fluid refrigerant source, a sufficient decrease in pressure over the well-defined length of the capillary tube, and a vacuum assisted decrease in pressure at the distal end of the capillary tube, the pre-cooled refrigerant can be controlled to boil and transition from a liquid to a gas as it exits the distal end of the capillary tube. At this transition point, for a defined system, as the refrigerant changes from “refrigerant in excess” (i.e. liquid) to “refrigerant limited” (i.e. gas), the temperature at the tip (“Tt”) will be at a minimum.
To verify that the tip temperature “Tt” is at a minimum, a temperature sensor can be mounted on the distal end of the cryoablation catheter. The measured temperature can be compared to a pressure-temperature curve for the given catheter tube, and the tip temperature “Tt” can be minimized by controlling the input working pressure “pw”.
In light of the above, it is an object of the present invention to provide a heat transfer system that can be safely introduced into the vasculature of a patient where it will create temperatures as low as about minus eighty-four degrees Centigrade. Another object of the present invention is to provide a heat transfer system that will minimize the measured tip temperature “Tt” by controlling the working pressure “pw”. Still another object of the present invention is to provide a heat transfer system that is relatively easy to manufacture, is simple to use and is comparatively cost effective.
A cryo-catheter (i.e. heat transfer system) in accordance with the present invention includes a supply tube having a proximal end and a distal end. The proximal end of the supply tube is connected in fluid communication with a source of fluid refrigerant, such as nitrous oxide (N2O). Structurally, the distal end of the supply tube is connected in fluid communication with the proximal end of a capillary tube. Of note, the supply tube and the capillary tube are each formed with respective lumens of a known length and diameter. A tip member is connected to the distal end of the cryo-catheter, to surround the distal end of the capillary tube, thereby creating a cryo-chamber. A temperature sensor, in electronic communication with a system controller, is mounted at the distal end of the cryo-catheter.
In operation, the fluid refrigerant is introduced into the supply tube in a liquid state at a working pressure “pw”. Typically the working pressure “pw” will be controlled to be in a range between three hundred and fifty psia and five hundred psia (350-500 psia). The liquid refrigerant then sequentially transits through the supply tube and the capillary tube. As specifically intended for the present invention, the fluid refrigerant experiences much more resistance, and a much greater pressure drop, as it passes through the capillary tube than while passing through the supply tube.
Importantly, as the fluid refrigerant exits the distal end of the capillary tube, it is substantially still in a liquid state. The dimensions of both the supply tube and capillary tube are specifically chosen, and the working pressure “pw” is actively controlled, to facilitate this result. The tip pressure “pt” on the fluid refrigerant, as it enters the cryo-chamber, is preferably less than about one atmosphere. As a result of the decrease in pressure to less than one atmosphere, the liquid refrigerant will begin to boil in the cryo-chamber, transitioning from a liquid state to a gaseous state. After the fluid refrigerant has transitioned into its gaseous state, the measured temperature, and hence the tip temperature “Tt”, will be at a minimum, and preferably less than about minus eighty-four degrees Centigrade (pt<−84° C.).
For a capillary tube having a known length and diameter, a curve can be plotted showing the tip temperature “Tt” (y-axis) as a function of working pressure “pw” (x-axis). There is a region of the pressure-temperature curve where the fluid refrigerant transitions from a liquid state to a gaseous state. This transition region is characterized by a pronounced change in the slope of the curve. As can be understood by those skilled in the art, the slope may be defined as the change in temperature (ΔT) divided by the change in pressure (Δp). A positive slope, for example, would represent an increase in temperature with a corresponding increase in pressure (or, in the alternative, a decrease in temperature with a decrease in pressure). The slope of the curve changes from a value of near zero at higher pressures, when the fluid refrigerant is a liquid, i.e. “refrigerant in excess”, to a significantly negative slope at lower pressures, when the refrigerant is in a gaseous state, i.e. “refrigerant limited”. In this transition region, there may also be a change in the sign of the slope of the curve (e.g. from a (+) slope to a (−) slope as the pressure decreases).
For the purposes of the present invention, a temperature sensor is mounted on the distal end of the cryo-catheter. The temperature sensor measures and transmits the tip temperature “Tt” to the system controller. In the preferred embodiment of the present invention, the system controller includes a signal receiver, a processor, a pressure control algorithm, and a means for controlling the working pressure, “pw”. After receiving the data, the system controller compares the tip temperature “Tt”, and working pressure “pw”, to the pressure-temperature curve for the given capillary tube. Using the measured data, the system controller adjusts the working pressure “pw” until such time as any increase in working pressure “pw” results in little or no change in tip temperature “Tt”, and any decrease in working pressure “pw” results in a significant change in tip temperature “Tt”. This point, in the transition region of the pressure-temperature curve, is indicative of the change in the fluid refrigerant from a liquid to a gas, as can be expected to occur at the distal end of the cryo-catheter tube (i.e. boiling in the cryo-chamber). This point also represents the point at which the tip temperature “Tt” is substantially at a minimum.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
A system in accordance with the present invention is shown in
Still referring to
As shown in
Mounted at the distal end of the cryo-catheter 20 is a temperature sensor 30. In the preferred embodiment of the present invention, as shown in
Referring now to
In operation, the present invention takes advantage of the thermodynamic phenomenon discussed above. The fluid refrigerant, after being cooled by the pre-cooler 16, is in a liquid state as it enters the supply tube 34. The fluid refrigerant enters the supply tube 34 at a working pressure “pw” of approximately 350-500 psia. The supply tube 34 is dimensioned so as to cause a minimal drop in pressure as the fluid refrigerant transits the supply tube 34. As the fluid refrigerant passes into the capillary tube 32, it is still in a liquid state. It is desirable that the fluid refrigerant remains a liquid as it transits the capillary tube 32, until such time as it exits the distal end 36 of the capillary tube 32 and enters the cryo-chamber 38. The capillary tube 32 is dimensioned to effectuate this result.
As the fluid refrigerant transits the capillary tube 32 and enters the cryo-chamber 38, the pressure on the fluid refrigerant is reduced from approximately the working pressure “pw” to a tip pressure “pt”. For the present invention, the tip pressure “pt” in the cryo-chamber 38 will preferably be less than approximately one atmosphere. The establishment and maintenance of the tip pressure “pt” is facilitated by the action of the vacuum source 22 that operates to evacuate the fluid refrigerant from the system 10 through the vacuum return line 24. As the fluid refrigerant exits the distal end 36 of the capillary tube 32 and enters the cryo-chamber 38, the decrease in pressure to less than approximately one atmosphere causes the liquid fluid refrigerant to start to boil. Referring again to
The present invention takes advantage of this empirically defined transition to control the working pressure “pw” and the tip temperature “Tt”. In the preferred embodiment of the present invention, the temperature sensor 30, in electronic communication with the system controller 28, monitors the tip temperature “Tt” and electronically communicates that data to the system controller 28. The system controller 28, also in electronic communication with the pressure regulators 18a and 18b, monitors the working pressure “pw” A control algorithm in the system controller 28 compares the working pressure “pw” and the tip temperature “Tt” of the system 10 to the pressure-temperature curve 50 exemplified by
In yet another embodiment of the present invention, the system controller 28 provides a visual representation of the tip temperature “Tt” data. Unlike the closed-loop system 10 described above, adjustments to the working pressure “pw”, if necessary, can be effected by manually adjusting the pressure regulators 18a and 18b.
While the particular Pressure-Temperature Control for a Cryoablation Catheter System as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.