This application relates to pressure vessels with end fitting improvements to increase retention of pressurized gas.
Pressure vessels may be used to compress and store many different gaseous substances. The compressed gas is used in a variety of applications, such as vehicle fuel and industrial applications, and as such, the pressure vessels can be designed for safe transportation and refill capability. In order to achieve acceptable volumetric efficiency and aid in transport and storage, the gas should be compressed to store a great amount of mass in a small area to achieve a high density. To maintain a high density, the gas should be stored at a very high pressure.
Many pressure vessels that store and transport compressed gas include end fittings to connect the pressure vessel to a valve, adapter, coupling, or plug. End fittings are used to fill, empty, or seal the pressure vessel and can interface with a smaller cross-sectioned tube extending from a larger cross-sectioned body of the pressure vessel. The fitting is made of two parts, a stem that reaches inside of the tube and a cap that fits outside of the tube. At high pressures, stored, compressed gas within the pressure vessel can impose large forces on the end fitting, with the result of a potential disengagement of the end fitting. This disengagement or disconnection would restrict function of the pressure vessel, as leaks of the compressed gas would occur. Thus, precautions should be taken to ensure that end fittings are sufficiently fixed to the pressure vessel.
Many end fittings, for example, end fittings used with high pressure hydraulic and pneumatic hoses, include a barbed stem that is inserted into the hose and an outer shell that is crimped onto the hose. Increased retention force is achieved by adding barbs onto the stem of the end fitting and then crimping the outer shell onto the hose to surround the barbed stem. The barbs can also be used to create interference with the liner or inside of a tubular or pressure vessel. Once crimped, the barbs fit tightly against the corrugated tubing or body of the pressure vessel, and the separate parts are held together by a crimped cap. However, as certification standards typically use minimum design failure pressure to be two to three times higher than the working pressure, this technique may not be sufficient to retain end fittings in higher pressure systems.
The disclosure relates to a pressure vessel assembly including a pressure element storing compressed gas and a shell enclosing the pressure element and capture the compressed gas that permeates from the pressure element. The pressure vessel assembly including an end fitting extending into a cavity of the pressure element and from the pressure element through the shell. The end fitting including a stem that extends out from the shell in one direction and into the cavity of the pressure element in an opposite direction and a cap that surrounds the pressure element and the stem at a location external to the pressure element. The pressure vessel assembly including a retention component sustaining engagement of the end fitting with at least one of the pressure element or the shell below a predetermined pressure threshold.
The stem may include one or more barbs that lock the stem in a fixed position in relation to the pressure element. The stem may further include holes extending through a surface of the stem, venting the compressed gas as the stem moves out of the cavity, and reducing pressure on the end fitting. The retention component may be an anchor positioned proximate to an end of the stem and positioned at a location within the cavity of the pressure element, and the anchor may include one or more arms for preventing removal of the stem from the cavity of the pressure element below the predetermined pressure threshold. The one or more arms of the anchor may include an edge that is flat, blunt, sharp, or any combination thereof, and the edge may puncture the pressure element above the predetermined pressure threshold. The stem may further include holes extending through the stem and venting the compressed gas to a pressure level below the predetermined pressure threshold as the stem moves out of the cavity and before the edge of the one or more arms punctures the pressure element. The stem may further include a first ridge positioned between the end of the stem and the anchor, and the first ridge fails and allows movement of the anchor as the anchor contacts the first ridge. The stem may further include a second ridge spaced from the first ridge, and the second ridge may be closer to the end of the stem than the first ridge, the second ridge configured to stop movement of the anchor as the anchor contacts the second ridge.
The retention component may be an adhesive plug, and the adhesive plug and the stem may be directly couple at a fixed position within the cavity of the pressure element and to prevent end fitting disengagement below the predetermined pressure threshold. The cap may be a first cap, and the retention component may include a bulkhead assembly including a second cap surrounding the pressure element and the stem at a location internal to and abutting an interior surface of the shell. The bulkhead assembly may include a third cap surrounding the stem at a location external to and abutting an exterior surface of the shell and a first collar coupling to the second cap. The first collar may distribute pressure applied to the second cap to the shell. The bulkhead assembly may include a second collar coupling to the third cap, and the second collar may clamp the shell between the second collar and the first collar. The bulkhead assembly may include one or more screws tightening or loosening the first and second collars in respect to the shell or in respect to the second or third caps. The retention component may include a tether with a first end coupled to the stem at a location external to the shell and a second end coupled to a curved portion of another pressure element interior to the shell.
The disclosure further relates to a pressure vessel assembly including a pressure element defining a cavity with a wide portion and a narrow portion, and the pressure element stores compressed gas. The pressure vessel assembly may include an end fitting extending into the cavity of the pressure element, and the end fitting may include a stem extending through the narrow portion and the wide portion and a cap surrounding the narrow portion of the pressure element and the stem at a location external to the pressure element.
The stem may include one or more barbs that lock the stem in a fixed position in relation to the pressure element. The narrow portion may include corrugations that align with the one or more barbs, and the cap may be crimp-able around the narrow portion so that the cap conforms to the corrugations, the one or more barbs, or both. The cap may include indents positioned to align with the corrugations and the one or more barbs, and the cap may be crimp-able around the narrow portion and the stem so that a tight fit forms between the corrugations, the one or more barbs, and the indents. When the cap crimps around the stem and the narrow portion at the corrugations, the cap may stretch axially so that the tight fit is formed between the pressure element and the stem.
The disclosure further relates to a pressure vessel assembly including pressure elements for storing compressed gas and a shell enclosing the pressure elements. The shell captures the compressed gas that permeates from the pressure elements. The pressure vessel assembly includes an end fitting extending through the shell and into a cavity of the pressure elements, and the end fitting includes a stem having a first end and a second end. The first end extends into the cavity of the pressure elements, and the second end extends out through the shell. The stem has a hollow portion so that the compressed gas is passable through the stem. The end fitting includes a tube fixed to the first end of the stem that distributes adhesive supplied through the hollow portion of the stem, and the distributed adhesive retains the end fitting within the pressure elements.
The pressure vessel assembly may further include an adhesive plug formed by the distributed adhesive, positioned between the stem and the pressure elements, and used to retain the end fitting within the pressure elements. The stem may further include barbs locking the stem in a fixed axial position in relation to the pressure elements so that the adhesive plug forms below a distal end of the tube. The cavity of the pressure elements may include a narrow portion and a wide portion, and the wide portion may house the tube and the adhesive plug. The narrow portion may include corrugations aligned along the barbs of the stem, and the corrugations may interface with the barbs of the stem so that the stem holds in a fixed axial position. The pressure vessel assembly may further include a cap crimp-able around the narrow portion of the pressure elements so that the second end of the stem is secured by the cap, and the cap and the adhesive plug may prevent the end fitting from moving radially relative to the pressure elements.
The disclosure includes a pressure vessel assembly that includes one or more pressure elements configured to store compressed gas; an end fitting that extends from an internal cavity of the one or more pressure elements. The pressure vessel assembly includes a retention component configured to sustain engagement of the end fitting with at least one of the pressure elements below a predetermined pressure threshold. The retention component includes a plug connected with the end fitting so that the end fitting does not slide through a distal opening of the one or more pressure element; or an anchor connected with the end fitting and comprising arms that are configured to sustain engagement of the end fitting with the at least one of the pressure elements.
The disclosure includes a pressure vessel assembly that includes one or more pressure vessels that define a cavity configured to store compressed gas and an end fitting that extends from the cavity and out of the one or more pressure vessels. The pressure vessel assembly includes a retention component positioned within the cavity on the end fitting and configured to sustain engagement of the end fitting against the one or more pressure vessels below a predetermined pressure threshold. The pressure vessel assembly includes a first ridge positioned between the retention component and an internal end of the end fitting and configured to fail and allow movement of the end fitting relative to the retention component during a rupture and a second ridge positioned at the internal end of the end fitting or between the first ridge and the internal end of the end fitting, the second ridge configured to stop movement of the retention component as the retention component contacts the second ridge.
The disclosure includes a pressure vessel assembly that includes pressure elements that define a cavity configured to store compressed gas. The pressure elements include one or more straight portions and one or more bent portions connecting two or more straight portions. The pressure vessel assembly includes a shell that encloses the pressure elements and an end fitting that extends from a terminal end of the pressure elements to an external environment. The pressure vessel assembly a tether that connects the end fitting and at least one of the shell or one of the one or more bent portions of the pressure elements so that the end fitting is retained on a portion of the terminal end when a rupture occurs.
The end fitting retention features disclosed herein are designed to increase retention capacity beyond what is provided by barbs alone. Several techniques of increasing retention capacity of the end fittings to pressure vessels are disclosed. One technique includes drilling small holes into sides of a stem portion of the end fitting. If the end fitting including the holes in the stem begins to disengage from the pressure vessel, gas will be released through the holes to decrease the pressure below the maximum retention capacity of the end fitting, slowing and/or stopping disengagement of the end fitting from the pressure element.
Another technique of retaining end fittings to pressure elements includes adding an anchor assembly to the end fitting. Once the end fitting is pushed through smaller-diameter tubing into the wide portion of the pressure element, the anchor assembly is seated into the wide portion of the pressure element and arms of the anchor assembly spread open. When deployed or opened, the arms of the anchor assembly are extended such that the end fitting is too wide to be pulled back out of the smaller-diameter tubing. Additionally, edges on the arms of the anchor assembly that engage with the inner cavity of the pressure element (e.g., the interior of the wide portion) can be tuned to pierce the cavity of the pressure element at specific pressure thresholds. For example, the anchor can be designed to pierce or puncture the cavity when a pressure level within the pressure element is some predetermined percentage (e.g. 50%, 100%, etc.) above a certification requirement, but still below a disengagement threshold. The edges may be flat, sharp, or blunt. Puncture of the cavity of the pressure vessel will provide pressure relief at the specific pressure threshold as designed, changing the failure mode from total end fitting disengagement to a slow leaking of gas through the pierced cavity and wall of the pressure element.
Another technique of retaining end fittings to pressure vessels is to use an adhesive, or another viscous or liquid substance, that cools or hardens between the cavity and tube of the stem of the end fitting to form an assembly with the stem of the end fitting fixed inside the tube or cavity of the pressure vessel using the cooled or hardened adhesive. The adhered parts provide a wide, solid base that is sized such that the adhered parts cannot be pushed out through the narrow portion of the tube of the pressure element. The wide portion of the pressure element will also help to distribute the stress acting on the end fitting and wide portion of the pressure element from the compressed gas.
Another technique of retaining end fittings to pressure vessel is to use a bulkhead assembly to secure the end fitting to a container or shell that surrounds the pressure elements. The use of the bulkhead assembly allows the container or shell to be a sturdy foundation to which the end fitting can be attached. The bulkhead assembly may include one or more collars and one or more nuts that either tighten or loosen the seal around the end fitting. A tether may also be included between a pressure vessel inside the container or shell and the end fitting outside of the container or shell to help keep the end fitting in place with respect to the container or shell.
The retention methods and techniques described herein can be used independently or together in order to improve end fitting retention for high-pressure, compressed-gas pressure vessels.
In the
When the stem 508 and the anchor 500 are coupled together, the stem 508 and the anchor 500 can be inserted into the cavity 504 of the pressure element 502, and the arms 518 get pushed together by the narrow portion 507 of the pressure element 502 so that the arms 518 are generally parallel with the stem 508. Once the anchor 500 reaches the wide portion 505 of the pressure element 502, the spring of the anchor 500 pushes the arms 518 open to a predetermined angle based on the design of the spring. The angle may be about 30 degrees or more, about 35 degrees or more, about 40 degrees or more, or about 45 degrees or more. The angle may be about 70 degrees or less, about 65 degrees or less, about 60 degrees or less, about 55 degrees or less, or about 50 degrees or less. The anchor 500 is designed to open with a total angle measured between the arms 518 that is wider than the narrow portion 507 of the pressure element 502 so that the arms 518 prevent removal of the stem 508 from the cavity 504 of the pressure element 502. Thus, the anchor 500 may change the failure mode from end fitting disengagement to slow leaking. This change in failure mode occurs because the anchor 500 punctures the pressure element 502 when the tensile force on the pressure element 502 reaches a predetermined pressure threshold. Therefore, at the pressure threshold of failure, the pressure element 502 leaks instead of the end fitting 501 disengaging from the pressure element 502.
In some embodiments, designing the anchor 500 so that leaking of the pressure element 502 occurs above a predetermined pressure threshold to relieve pressure is optional in terms of the use of the anchor 500. The anchor 500 can be designed so that the arms 518 fail through deformation of the spring or bodies of the arms 518 rather than causing a puncture or breaking apart of the anchor 500. When the arms 518 are designed to bend instead of break, the arms 518 still cannot fit through the narrow portion 507 of the pressure element 502, so slow leaking occurs in contrast to a broken anchor 500 which could slip out of the narrow portion 507 and allow a disengagement failure mode.
As the end fitting 601 is pushed out of the cavity 604 due to excess pressure within the pressure element 602, the anchor 600 pushes against the cavity 604 of the wide portion 605 of the pressure element 602. The pushing of the anchor 600 causes a reaction force from the anchor 600 onto the first ridge 620. The first ridge 620 is designed to fail, that is, to allow the anchor 600 to slide along the stem 608, at a first pressure threshold. For example, the first pressure threshold can be 15,000 psi if the pressure element 602 is designed to store gas up to 3,600 psi or 25,000 psi if the pressure element 602 is designed to store gas up to 10,000 psi. The stem 608 then slides partially outside of the narrow portion 607 of the pressure element 602 without moving the anchor 600 so that the anchor 600 is now pushing against the second ridge 622. The second ridge 622 has a greater profile, overall size, and/or toughness than the first ridge 620 so that the second ridge 622 can withstand a greater force and will not fail until the pressure element 602 reaches a second, higher pressure threshold. For example, the second pressure threshold can be 20,000 psi if the pressure element 602 is designed to store gas up to 3,600 psi or 30,000 psi if the pressure element 602 is designed to store gas up to 10,000 psi. Once the stem 608 moves outward from cavity 604, the holes 612 become positioned outside of the cavity 604 and the narrow portion 607, so the holes 612 can vent pressurized gas. The consequence is that less pressure generates less force against the anchor 600 and the end fitting 601 to prohibit disengagement or ejection of the end fitting 601. The example pressure element 602 of
In some embodiments, the anchor 600 and the holes 612 provide a dual system of venting pressurized gas. The second ridge 622 of the stem 608 provides a stop to prevent the anchor 600 from sliding off the stem 608. As described above, when the anchor 600 slides to the second ridge 622, the holes 612 are pushed outside of the cavity 604 past the narrow portion 607 so that pressurized gas is vented. As the second ridge 622 holds the anchor 600 in a fixed position, the anchor 600 may then puncture the cavity 604 with the arms 618 of the anchor 600 so that both the punctures created by the arms 618 and the holes 612 are simultaneously venting pressurized gas.
In some embodiments, a sealer may be added on the end fitting 1001 at a bottom of the adhesive plug 1028 to stop any adhesive from leaking down between the stem 1008 and the pressure element 1002 before the adhesive has hardened. The adhesive plug 1028 may be formed from nylon, epoxy, glue, cement, or any other material that forms a seal between the pressure element 1002 and the stem 1008.
The minimum safety factor is a valuable indicator of successful improvement in end fitting retention since the target pressure, for example, a pressure of 30,000 psi, for the pressure element takes into account a degree of additional stress pressure as compared to a normal working pressure, for example, a pressure of 10,000 psi, for the relevant pressure element. Therefore, the Silicon Nitride exhibits good structural integrity at conditions that include significantly higher pressures than average conditions experienced by pressure vessel assemblies, like the pressure vessel assemblies 100 of
As shown in
The bulkhead assembly 1500 may include a tether 1544 for retaining the end fitting 1501. The tether 1544 may connect the end fitting 1501 and the shell 1510 or the end fitting 1501 and the pressure element 1502 inside of the shell 1510. In the
In some embodiments, the caps 1606, 1607 and the collars 1640, 1641 may be tightened down with a wrench or any other means capable of tightening a threaded cylinder. The shell 1610 may be reinforced to increase the pressure threshold capable before disengagement of the end fitting 1601 from the pressure element 1602. The collars 1540, 1541, 1640, 1641, that are squeezed together may include nuts, adjustable rings, bolts, or any combination of tightening on tensioning mechanisms. The collars 1640, 1641 may be threaded to match the caps 1606, 1607.
Since the cap 1712 is positioned on the inside of the of shell 1710 relative to outside of the bulkhead assembly 1700, collars 1716, 1718 are used to provide a mechanism for preventing both axial and radial motion of the stem 1708, pressure element 1701, and cap 1712 relative to the shell 1710. The collars 1716, 1718 and the stem 1708 have threaded portions 1720 that can be screwably secured when the stem 1708 is inserted into the narrow portion 1706 of the pressure element 1701. The stem 1708 is shown as having multiple threaded portions 1720, spaced apart axially along the stem 1708, that are sized to account for various thicknesses of the shell 1710, use of the collars 1716, 1718, and interface with the gas source (not shown). The shell 1710 may further include threaded portions (not shown) for an additional feature to secure the stem 1708.
Before the bulkhead assembly 1700 is fully assembled, the cap 1712 is squeezed and/or secured around the narrow portion 1706 and the stem 1708, and the collars 1716, 1718 are threaded with the stem 1708 so that the cap 1712 is properly positioned for the crimping operation. Gases are flow-able between the pressure element 1701 and an outside environment through a channel 1722 of the stem 1708. In this configuration, the gases should not be flowing or leaking at a space between the external surface of the stem 1708 and the internal surface of the narrow portion 1706. Further, as the collars 1716, 1718 and the cap 1712 are wrapped or squeezed around an opening 1724 of the shell 1710, gases are prevented from flowing and/or leaking out the shell 1710 at the opening 1724.
All of the retention techniques described herein allow for improvement in predictability of failure mode to be calculated based on pressure and corresponding tensile force experienced by compressed-gas pressure elements either independently or for use in pressure vessel assemblies. These retention techniques also help to lower fatigue and therefore extend the life expectancy of compressed-gas pressure elements.
This application is a continuation application of U.S. application Ser. No. 17/762,500, filed on Mar. 22, 2022, which is a national stage entry of PCT Application No. PCT/US2020/051954, filed on Sep. 22, 2020, which claims benefit of and priority to U.S. Provisional Application No. 62/904,237, filed on Sep. 23, 2019, the entire disclosures of which are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62904237 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17762500 | Mar 2022 | US |
Child | 18762144 | US |