A pressure vessel or pressure tank is normally utilized in industrial and residential pressurized water systems as an accumulator tank for the storage of water. However, pressure vessels are also used to store and transmit other liquids, vapors, and gases under pressure. The pressure vessel is generally connected in line with a supply source that includes a pumping device. The pressure vessel can supply water under pressure for low demand periods without requiring the pumping device to turn on. For higher demand periods, the pressure vessel may allow the pump to run for recommended minimum periods while not interrupting the demand requirements. In order for the pressure vessel to act in this manner, air under pressure contained in the vessel is compressed as water is pumped into the vessel. As more water enters the vessel, a pressure rise results, and the pump will shut off at a predetermined sensed pressure. The cycle will not repeat until a demand relieves the vessel pressure to a predetermined low sensed pressure, which will turn on the pump to refill the pressure vessel.
Typically, the pressure vessel includes two complementary cup-shaped sections that are made of metal, which requires assembly with, e.g., welding to, a metal clamp ring that is disposed inside of the two tank sections. The pressure vessel may further include a valve stem typically disposed in an upper portion of the vessel for measuring air pressure inside of the pressure vessel. The valve stem is often covered by a cap to inhibit interference or damage to the valve stem. A typical pressure vessel is relatively expensive and labor and time intensive to manufacture. Moreover, metal pressure vessels can corrode from external environmental exposure, which can lead to deterioration of the pressure vessel and the water system. Such deterioration can lead to undesirable results, such as leaking vessels.
Conventional pressure vessels also include a separator bag or deformable diaphragm that divides the vessel into two sections. The diaphragm separates gas in one section of the vessel from water in the other section of the vessel and the rest of the system. The gas section is pre-charged with gas under pressure so that the diaphragm is displaced to increase or decrease the volume of the gas section according to the variations of the volume of water in the other section. An air valve extends through one end of the vessel, and an inlet and outlet aperture is provided at the other end of the vessel for fluid communication with the water system. As water is pumped into the vessel, the bag or diaphragm is forced upwardly by the incoming water.
Additionally, the separator bags or diaphragms are usually attached to the pressure vessels in one of two ways. First, the separator bags are either peripherally sealed, or otherwise attached to the sidewall of the pressure vessel, usually at an assembly seam. Second, the pressure vessel may include a removable cell (including the separator bag) that may be removed and replaced upon failure. Both arrangements have advantages and disadvantages. The primary advantage of a diaphragm-type separator attached to, or peripherally sealed to, the sidewall is that the diaphragm may be constructed from a relatively heavy gauge plastic or rubber material, and may be shaped to conform to the cross-section of the vessel or in a manner to eliminate stretching. This arrangement, however, involves the problem of providing a pressure-tight seal between the mating halves of the pressure vessel and between the sidewall of the vessel and the diaphragm. For the sake of economy, attempts have been made to combine the seal between the vessel halves and the seal between the diaphragm and the sidewall into a single assembly. This arrangement, however, has not been entirely successful and may result in vessel leakage. Furthermore, these attachment arrangements usually involve protruding flanges and clamps on the exterior of the vessel that interfere with attempts to helically wind the vessel for added reinforcement (e.g., using a filament winding process).
One known system discloses a split tank closure and diaphragm assembly for a hydropneumatic filament wound pressure vessel. The assembly includes first and second cup shaped plastic tank liners having oblate ellipsoidal end portions and cylindrical sidewall portions terminating in cylindrical open mouth portions. A ring is provided for joining and sealing the open mouth portions together to form a sealed container and to mount a diaphragm within the tank to divide the interior of the tank into variable volume chambers. However, the mounting ring and diaphragm are separate elements that may not provide a pressure-tight seal between the first and second cup shaped plastic tank liners of the pressure vessel and between the sidewall of the vessel and the diaphragm.
Another known system discloses a water pressure tank for use with pumping systems. The water pressure tank includes a pair of tank sections having matching open ends, surrounded by assembly flanges. The assembly flanges are provided with matching bolt holes so that the pair of tank sections can be united by bolts. A peripheral rim of a diaphragm having concentric circular corrugations is clamped between the assembly flanges. Thus, the diaphragm is permitted to expand in either direction from an intermediate position within the pressure tank. However, the assembly flanges protrude outwardly beyond an outer surface of the pressure tank and may interfere with attempts to helically wind the tank for added reinforcement (using a filament winding process).
In addition, if loss of pneumatic pressure is encountered, the diaphragm is typically not restricted from movement within the pressure tank causing the pressure tank to become completely filled with water. This undesirable condition may be the result of a faulty o-ring, a valve stem malfunction, or a worn valve stem cap, for example. Attempts have been made to combine a diaphragm restrictor and the seal between the diaphragm and the sidewall in a single assembly. This arrangement, however, has not been entirely successful and tank malfunction and leakage has resulted.
Further, conventional valve stem and valve cap assemblies do not extend, or extend a small amount, beyond the top of the pressure vessel, making it difficult to access the valve stem to check the vessel pressure. Additionally, conventional pressure vessels often include a valve cap that covers the valve stem and a separate pole piece cap that covers the valve stem and valve cap assembly. The various cap assemblies may be relatively expensive and time intensive to manufacture. Moreover, conventional valve stems tend to develop slow leaks over time due to improper sealing mechanisms in the various cap assemblies, which may lead to incorrectly pressurized vessels.
Therefore, it would be desirable to provide a non-metallic vessel assembly that does not affect the quality or taste of water being held in the vessel and does not deteriorate over time in a corrosive environment. It would also be desirable to provide a non-metallic vessel assembly with an internal diaphragm that is seamlessly installed and interposed between the water chamber and the gas chamber to separate the water from pressurized gas and provides a positive seal between vessel liners. Furthermore, it would be desirable to provide a non-metallic, diaphragm-type vessel assembly that can be mechanically locked together with fiberglass winding tension and can withstand the internal pressures normally associated with vessel assemblies.
It would also be desirable to provide a vessel assembly that provides easy access to the valve stem for checking vessel pressure while at the same time protects the air stem from damage during transit and normal use. It would also be desirable to provide a vessel assembly that seals the air stem from the valve stem to inhibit air leaks, as well as protect the air stem from debris. Furthermore, it would be desirable to provide a diaphragm-type vessel assembly that combines the support ring and a hydrostatic restrictor into one component that provides compression on the diaphragm joint connection and limits the hydraulic movement of the diaphragm, thereby allowing hydraulic pressure or pneumatic pressure to freely pass through the pressure vessel during normal use.
Some embodiments of the invention provide a joint system for a pressure vessel including a first tank liner having a first circumferential side wall and a first end portion offset from the first circumferential side wall to form a first outer annular recess. The joint system may also include a second tank liner having a second circumferential side wall and a second end portion offset from the second circumferential side wall to form a second outer annular recess. A convoluted diaphragm may divide the pressure vessel into a pair of chambers sealed relative to each other and may be positioned between the first tank liner and the second tank liner. An H-ring may have a first circumferential groove and a second circumferential groove. The first circumferential groove may be configured to receive the first end portion of the first tank liner and the second circumferential groove may be configured to receive the second end portion of the second tank liner. Fiberglass windings may surround the first tank liner and the second tank liner in tension and may be configured to lock the first tank liner and the second tank liner together.
Other embodiments of the invention provide a joint system for a pressure vessel including a first tank liner having a first circumferential side wall and a first end portion offset from the first circumferential side wall to form a first outer annular recess. The joint system may also include a second tank liner having a second circumferential side wall and a second end portion offset from the second circumferential side wall to form a second outer annular recess. An H-ring over-molded with a polymeric material may have a first circumferential groove and a second circumferential groove. In another embodiment, the H-ring may be included in the joint system without the overmolding of a polymeric material. The first circumferential groove may be configured to receive the first end portion of the first tank liner and the second circumferential groove may be configured to receive the second end portion of the second tank liner. Fiberglass windings may surround the first tank liner and the second tank liner in tension and are configured to lock the first tank liner and the second tank liner together.
Another embodiment of the invention provides a joint system for a pressure vessel including a first tank liner having a first circumferential side wall and a first end portion vertically aligned with first circumferential side wall. The joint system may also include a second tank liner having a second circumferential side wall and a second end portion offset from the second circumferential side wall. The second end portion may have a first outwardly facing annular groove and a second outwardly facing annular groove. A convoluted diaphragm may divide the pressure vessel into a pair of chambers sealed relative to each other and having an outer wall portion to snap-fit the first tank liner and the second tank liner together. The outer wall portion may include a first inwardly facing circumferential bead that engages the first outwardly facing annular groove to provide a seal. A second inwardly facing circumferential bead may engage the second outwardly facing annular groove to provide a seal so that the outer wall portion is positioned vertically between the first end portion of the first tank liner and the second end portion of the second tank liner.
In yet another embodiment of the invention a method of joining tank liner sections together for a pressure vessel system is provided. The method includes providing a first tank liner having a first circumferential side wall and a first end portion offset from the first circumferential side wall to form a first outer annular recess. A second tank liner having a second circumferential side wall and a second end portion offset from the second circumferential side wall may be provided to form a second outer annular recess. An H-ring with a convoluted diaphragm may be over-molded and include a first circumferential groove and a second circumferential groove. In another embodiment, the H-ring may be provided without overmolding of a polymeric material. The first circumferential groove may engage the first end portion of the first tank liner, and the convoluted diaphragm may be positioned between the first tank liner and the second tank liner to divide the pressure vessel into a pair of chambers sealed relative to each other. The second circumferential groove may engage the second end portion of the second tank liner, and the first tank liner and the second tank liner may be surrounded with fiberglass windings in tension to lock the first tank liner and the second tank liner together.
Other embodiments of the invention provide a cap system for a pressure vessel including an air stem having a first end portion and a second end portion. The air stem axially extends through a circular recess of the pressure vessel. The first end portion and the second end portion of the air stem each have external threads. The cap system also includes a valve cap having internal threads that is configured to engage the external threads of the first end portion of the air stem. A washer is positioned inside the valve cap and is configured to seal air within the air stem and valve cap. An outer cap covers the circular recess of the pressure vessel and has a hollow cavity extending downwardly from a central portion of the outer cap. The hollow cavity has a shape substantially the same as the valve cap, and the valve cap is configured to be anchored to the outer cap.
Other embodiments of the invention provide a method for capping an air stem for a pressure vessel system. The method includes inserting an internally threaded fastener into an aperture of a valve guard formed within a circular recess of the pressure vessel system. An air stem having a first end portion and a second end portion with external threads may be provided. The second end portion of the air stem is engaged with the internally threaded fastener, and a washer is inserted into a valve cap having internal threads. An outer cap is provided that covers the circular recess of the pressure vessel. The outer cap includes a hollow cavity downwardly extending from a central portion of the outer cap that has a shape that corresponds to the valve cap. The valve cap is press-fitted into the outer cap and the internal threads of the valve cap are coupled to the externally threaded end portion of the air stein to provide a substantially air tight and substantially water tight seal.
Another embodiment of the invention provides a diaphragm restrictor system for a pressure vessel including a first tank liner having a first circumferential side wall and a first end portion vertically aligned with the first circumferential side wall. The diaphragm restrictor system may also include a second tank liner having a second circumferential side wall and a second end portion offset from the second circumferential side wall. A diaphragm is provided that divides the pressure vessel into a pair of chambers sealed relative to each other and having an outer wall portion positioned vertically between the first end portion of the first tank liner and the second end portion of the second tank liner. A restrictor having an integrally formed circumferential support ring is positioned between the pair of chambers. The integrally formed support ring may be configured to engage the offset second end portion of the second tank liner. In addition, the restrictor is configured to limit upward movement of the diaphragm within the pressure vessel and to compress the outer wall portion of the diaphragm between the first end portion of the first tank liner and the second end portion of the second tank liner. The hydrostatic restrictor can also be functional without the convolution portion of the diaphragm, whereas the diaphragm joint section would only be used to seal the upper and lower tank halves.
In yet another embodiment of the invention, a method for restricting a diaphragm within a pressure vessel system is provided. The method includes providing a first tank liner having a first circumferential side wall and a first end portion vertically aligned with the first circumferential side wall. A second tank liner having a second circumferential side wall and a second end portion offset from the second circumferential side wall is provided. A diaphragm is positioned between the first tank liner and the second tank liner to divide the pressure vessel into a pair of chambers sealed relative to each other. The diaphragm may have an outer wall portion positioned vertically between the first end portion of the first tank liner and the second end portion of the second tank liner. In addition, a restrictor having an integrally formed circumferential support ring is positioned between the pair of chambers to limit upward movement of the diaphragm within the pressure vessel and to compress the outer wall portion of the diaphragm between the first end portion of the first tank liner and the second end portion of the second tank liner. The restrictor can also be functional without the convolution portion of the diaphragm, whereas the diaphragm joint section may only be used to seal the upper and lower tank halves.
In another embodiment of the invention, a pressure vessel is provided. The pressure vessel includes a joint for locking a first tank liner and a second tank liner together. The pressure vessel further includes a cap system coupled to the second tank liner. The cap system includes an air stem extending beyond a recess of the pressure vessel to provide access to the air stem for acquiring a pressure within the pressure vessel. A diaphragm restrictor is coupled to the joint, and the diaphragm restrictor divides the pressure vessel into a pair of chambers. The diaphragm restrictor is also configured to limit upward movement of a diaphragm within the pressure vessel.
These and other features, aspects, and advantages of the present invention will become better understood upon consideration of the following detailed description, drawings, and appended claims.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.
A pressure vessel or tank is normally utilized in industrial and residential pressurized water systems for stabilizing water pressure and absorbing water hammers. A pressure vessel is typically made of metal and pressurized by a gaseous or liquid medium. In typical applications, pressure vessels are employed to supply a liquid substance, such as water, by means of pressurized air from a container placed in the pressure vessel via a supply line to a location where the water or other liquid is used.
As shown in
The pressure vessel 102 may be a fiberglass reinforced pressure vessel, for example, and is defined by a first tank liner 104 and a second tank liner 106. The first tank liner 104 and the second tank liner 106 are cup shaped liners that may be constructed of thermoplastic, for example. However any suitable, non-corrosive material may be used to form the first tank liner 104 and the second tank liner 106. The first tank liner 104 and the second tank liner 106 are separated by a diaphragm 122 (e.g., convoluted diaphragm) that over molds an H-ring 124. The convoluted diaphragm 122 may separate the pressure vessel 102 into a pair of chambers 126 including an upper pressure chamber 114 and a lower water chamber 128 to form a hydropneumatic tank. The first tank liner 104 and the second tank liner 106 may be injection molded or may be formed by other molding techniques.
The outer surface of each of the first tank liner 104 and the second tank liner 106 may be filament wound in a helical pattern, for example, by resin impregnated rovings, such as resin impregnated continuous glass fibers 134, by employing conventional filament winding techniques. By surrounding the first tank liner 104 and the second tank liner 106 in tension with the glass fibers 134, a mechanical locking mechanism is formed to lock the first tank liner 104 and the second tank liner 106 to the H-ring 124, convoluted diaphragm 122 combination, thereby forming a positive water tight and air tight pressure seal 154 (see
As shown in
The first tank liner 104 may be provided with an inlet 116 at a bottom portion of the pressure vessel 102. The inlet 116 may be configured to receive a tank bottom fitting 118 having a threaded axis opening 120 extending into the water chamber 128. The tank bottom fitting 118 may be coupled to a water connection 130 and may be sealed within the inlet 116 by suitable electromagnetic heating techniques, a suitable adhesive, and/or both. Alternatively, the tank bottom fitting 118 may be molded as an integral part of the first tank liner 104.
As shown in
The H-ring 124 is defined by a cylindrical outer surface 136 corresponding to the outside diameter of a first circumferential side wall 138 and a second circumferential side wall 140 of the first tank liner 104 and the second tank liner 106, respectively. The H-ring 124 is further defined by a first circumferential groove 142 and a second circumferential groove 144. The first circumferential groove 142 is vertically aligned with and inverted relative to the second circumferential groove 144, as shown in
As shown in
The convoluted diaphragm 122 may be preformed with one or more concentric circular corrugations 158, as best shown in
In another embodiment, as shown in
The H-ring 224 is defined by the cylindrical outer surface 236 corresponding to the outside diameter of the first circumferential side wall 138 and the second circumferential side wall 140 of the first tank liner 104 and the second tank liner 106, respectively. The H-ring 224 is further defined by the first circumferential groove 242 and the second circumferential groove 244. The first circumferential groove 242 is vertically aligned with and inverted relative to the second circumferential groove 244, as shown in
In another embodiment, as shown in
Rather than using the H-ring 124 as described with respect to the joint system 100, the convoluted diaphragm 322 includes an outer wall portion 366, as shown in
Turning now to
Additionally, the grid plate 166 may have a dome shaped protrusion 172, as shown in
In an alternative embodiment, as shown in
Additionally, the bottom diffuser 466 is defined by the dome shaped body 472 extending from the annular edge 476 and terminating at the central portion 474. The bottom diffuser 466 further includes the plurality of holes 478 for diffusing water, as well as the plurality of circumferentially arranged slots 480 that are separated by the plurality of radially extending ribs 482, as shown in
Turning now to
The second tank liner 506 may be provided with the circular recess 508 configured to receive the cup shaped valve guard 510 that may be fastened within the recess 508. A one way check valve, such as the conventional valve stem 512, may be provided within the valve guard 510 and extend through the valve guard 510 and the second tank liner 506 for fluid communication with the pressure chamber 514 within the pressure vessel 502.
The first tank liner 504 may be provided with the inlet 516 configured to receive the tank bottom fitting 518 with the threaded axis opening that extends into the water chamber 528. The tank bottom fitting 518 may be coupled to the water connection 530 and may be sealed within the inlet 516 by suitable electromagnetic heating techniques or a suitable adhesive or both. Alternatively, the tank bottom fitting 518 may be molded as an integral part of the first tank liner 504.
As shown in
More particularly, in some embodiments, the outer cap 524 is substantially cylindrical in shape and may be formed by injection molding using a thermoplastic, such as polypropylene or polyethylene, for example. In an alternative embodiment, the outer cap 524 may be provided in the form of a square or rectangular shape, for example. The outer cap 524 includes a flat top 568 surrounded by a circumferential side wall 570. The flat top 568 is sufficiently sized to cover the circular recess 508 of the pressure vessel 502, thus inhibiting debris (e.g., dust and dirt) from interfering with the air stem 511. The circumferential side wall 570 may include one or more vertically extending ribs 572 to provide a sufficient gripping surface for a user to remove the outer cap 524 from the pressure vessel 502.
In addition, the outer cap 524 may include a hollow cavity 574 that downwardly extends from a central portion 576 of the flat top 568 inside the outer cap 524. The hollow cavity 574 may be substantially the same shape as the valve cap 520 to allow the valve cap 520 to be snap-fitted or press-fitted, for example, into the hollow cavity 574. Alternatively, the valve cap 520 may be anchored to the hollow cavity 574 by using glue or any other suitable adhesive to inhibit the valve cap 520 from rotating or separating from the outer cap 524. The hollow cavity 574 may include an inner surface 578 defined by one or more circumferential grooves 580 and one or more circumferential lips 582 that correspond with a circumferential lip 584 and a circumferential groove 586, respectively, disposed on an outer surface 588 of the valve cap 520. The valve cap 520 may have internal threads 590 on an inner surface 592 of the valve cap 520 positioned just below the washer 536, for example.
Once the valve cap 520 is anchored to the outer cap 524, the single cap assembly may be screwed onto the air stem 511 by engaging the internal threads 590 with external threads 594 positioned on a first end portion 596 of the air stem 511. The air stem 511 includes a hollow core 598, as shown in
Prior to coupling the valve cap 520 and the outer cap 524 assembly to the air stem 511, the air stem 511 is connected to the valve guard 510. As shown in
Still referring to
In another embodiment shown in
In some embodiments, the outer cap 624 is substantially cylindrical in shape and may be formed by injection molding using a thermoplastic, such as polypropylene, for example. In an alternative embodiment, the outer cap 624 may be provided in the form of a square or rectangular shape, for example. The outer cap 624 includes the flat top 668 that is surrounded by the circumferential side wall 670. The flat top 668 is sufficiently sized to cover the circular recess 608 of the pressure vessel 602, thus inhibiting debris (e.g., dust and dirt) from interfering with the air stern 611. Similar to the cap system 500, the circumferential side wall 670 may include vertically extending ribs 672 to provide a sufficient gripping surface for a user to remove the outer cap 624 from the pressure vessel 602.
In addition, the outer cap 624 may include the hollow cavity 674 that downwardly extends from the central portion 676 of the flat top 668 inside the outer cap 624. The hollow cavity 674 may be substantially the same shape as the valve cap 620 to allow the valve cap 620 to be press-fitted, for example, into the hollow cavity 674. Alternatively, the valve cap 620 may be anchored to the hollow cavity 674 by using glue or any other suitable adhesive to inhibit the valve cap 620 from rotating or separating from the outer cap 624. The hollow cavity 674 may include the inner surface 678 defined by one or more circumferential grooves 680 and one or more circumferential lips 682 that correspond with the circumferential lip 648 and the circumferential groove 686, respectively, disposed on the outer surface 688 of the valve cap 620.
The circumferential lip 684 of the valve cap 620 may be hex-shaped, for example, to inhibit the valve cap 620 from rotating or separating from the outer cap 624. In addition, the valve cap 620 may have internal threads (not shown) on the inner surface 692 that are positioned adjacent (e.g., just below) the washer 636, for example. The valve cap 620 in the present embodiment may be constructed by over molding a brass alloy or steel plated insert nut, for example, with a thermoplastic material, such as polypropylene or high density polyethylene. Alternatively, the valve cap 620 can be injection molded followed with an interference press fit with the insert nut or valve cap 620.
The cap assembly may be screwed onto the air stem 611 in a similar manner as previously described with respect to the cap system 500, and the air stem 611 may also be connected to the valve guard 610 in a similar manner.
In an alternative embodiment, the valve cap 520, 620 may include any suitable quantity of circumferential lips 584, 684 and circumferential grooves 586, 686 to engage corresponding circumferential grooves 580, 680 and circumferential lips 582, 682 disposed on the hollow cavity 574, 674. In yet another alternative embodiment, the valve cap 520, 620 may be integrally formed with the hollow cavity 574, 674 to inhibit the valve cap 520, 620. Thus, as the outer cap 524, 624 is rotated, the integrally formed valve cap 520, 620 also rotates to engage or disengage the external threads 594, 694 of the air stem 511, 611.
Referring now to
Still referring to
The restrictor 701 may have a dome shaped surface 707 and include an integrally formed circumferential support ring 703 along a bottom edge 705. The restrictor 701 is positioned between the pressure chamber 714 and the water chamber 728 so that the circumferential support ring 703 can engage the offset second end portion 750 of the second tank liner 706. The circumferential support ring 703 is sufficiently sized in diameter to provide compression on the offset second end portion 750. Thus, the circumferential support ring 703 provides compression on the outer wall portion 766 of the diaphragm 722 that is sandwiched between the first end portion 746 of the first tank liner 704 and the second end portion 750 of the second tank liner 706. As the diaphragm 722 extends into the pressure chamber 714, the restrictor 701 will inhibit the diaphragm 722 from extending past the dome shaped surface 707.
The restrictor 701 may also include one or more apertures 709 spaced along the dome shaped surface 707 to allow hydraulic pressure or pneumatic pressure to pass through the restrictor 701 during normal operation of the pressure vessel 702. The one or more apertures 709 may extend from the circumferential support ring 703 to a central portion 711 of the dome shaped surface 707. The apertures 709 of the embodiment shown in
In another embodiment, as shown in
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.
This application claims the benefit of the filing date of U.S. provisional patent application Ser. No. 61/881,877 entitled “MECHANICAL JOINT FOR PRESSURE VESSEL SYSTEM AND METHOD” filed Sep. 24, 2013, and U.S. provisional patent application Ser. No. 61/926,862 entitled “AIR STEM CAP AND DIAPHRAGM HYDROSTATIC RESTRICTOR FOR PRESSURE VESSEL SYSTEM AND METHOD” filed Jan. 13, 2014, the entire contents of which are incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
61881877 | Sep 2013 | US | |
61926862 | Jan 2014 | US |