The present invention relates generally to a device that pressurizes and sprays water, such as for outdoor cleaning applications. More specifically, the present invention relates to a device that is configured to condition the flow of water, such as by changing the flow rate, the water pressure, the shape of the flow exiting the device, or other characteristics of the flow, in order to customize performance of the device to one of a variety of outdoor cleaning tasks.
Different water spraying devices are used for different applications. Garden hose sprayers may be attached to garden hoses and typically include nozzles that constrict the flow path of water in order to condition the flow for various applications, such as cleaning windows, washing a car, watering plants, etc. Flow rate and water pressure are limited by the water source supplying water to the garden hose sprayer, which may be insufficient for some applications.
Pressure washers typically include pumps to increase the pressure of water for heavy-duty cleaning and resurfacing applications. The water pressure is greatly increased relative to a typical garden hose sprayer, but the flow rate may be decreased and the intensity of the spray may be too great from some applications, such as cleaning windows and watering plants.
Garden hose booster systems increase water pressure relative to the household water supply, such as for cleaning and other general outdoor tasks. However, the water pressure increase by the garden hose booster is typically less than that of a pressure washer. A need exists for a water spraying device configured for a wide variety of outdoor cleaning applications. A need also exists to improve the “flushing” or “rinsing” capability of pressure washers, particularly electric pressure washers, (e.g., to wash away debris or rinse an object being cleaned).
One embodiment of the invention relates to a pressure washer including a prime mover, a water pump coupled to the prime mover, the water pump including a pump inlet for receiving fluid from a fluid source and a pump outlet for supplying a pressurized primary fluid, a jet pump including a primary fluid inlet fluidly coupled to the pump outlet, a secondary fluid inlet configured to be coupled to the fluid source, and a fluid outlet, and a spray gun configured to be fluidly coupled to the fluid outlet of the jet pump, the spray gun including a spray gun outlet having a variable effective flow area. Wherein, in operation, a first effective flow area of the spray gun outlet creates a first back pressure at the jet pump, thereby implementing a high pressure operating mode in which the pressurized primary fluid flows through the jet pump and exits through the fluid outlet of the jet pump. Wherein, in operation, a second effective flow area of the spray gun outlet that is greater than the first effective flow area creates a second back pressure less than the first back pressure at the jet pump, thereby implementing a high flow operating mode in which the pressurized primary fluid flows through the jet pump and entrains a secondary fluid supplied through the secondary fluid inlet from the fluid source so that the secondary fluid also flows through the jet pump, resulting in a combined fluid flow of the primary fluid and the secondary fluid exiting through the fluid outlet of the jet pump.
Another embodiment of the invention relates to an electric pressure washer including an electric motor, a power cord for supplying electricity to the electric motor, a water pump coupled to the electric motor, the water pump including a pump inlet for receiving fluid from a fluid source and a pump outlet for supplying a pressurized primary fluid, a jet pump including a primary fluid inlet fluidly coupled to the pump outlet, a secondary fluid inlet configured to be coupled to the fluid source, and a fluid outlet, and a spray gun configured to be fluidly coupled to the fluid outlet of the jet pump, the spray gun including a spray gun outlet having a variable effective flow area. Wherein, in operation, a first effective flow area of the spray gun outlet creates a first back pressure at the jet pump, thereby implementing a high pressure operating mode in which the pressurized primary fluid flows through the jet pump and exits through the fluid outlet of the jet pump. Wherein, in operation, a second effective flow area of the spray gun outlet that is greater than the first effective flow area creates a second back pressure less than the first back pressure at the jet pump, thereby implementing a high flow operating mode in which the pressurized primary fluid flows through the jet pump and entrains a secondary fluid supplied through the secondary fluid inlet from the fluid source so that the secondary fluid also flows through the jet pump, resulting in a combined fluid flow of the primary fluid and the secondary fluid exiting through the fluid outlet of the jet pump.
Another embodiment of the invention relates to a pressure washer including a prime mover, a water pump coupled to the prime mover, the water pump including a pump inlet for receiving fluid from a fluid source and a pump outlet for supplying a pressurized primary fluid, a jet pump, and a spray gun configured to be fluidly coupled to the fluid outlet of the jet pump, the spray gun including a spray gun outlet having a variable effective flow area. The jet pump includes a primary fluid inlet fluidly coupled to the pump outlet, a secondary fluid inlet configured to be coupled to the fluid source, and a fluid outlet, a mixing chamber fluidly upstream of the fluid outlet and fluidly coupled to the secondary fluid inlet, a nozzle having a restriction, wherein the nozzle is fluidly coupled between the primary fluid inlet and the fluid outlet so that the pressurized primary fluid flows through the restriction prior to entering the mixing chamber, a bypass conduit fluidly coupled to the pump outlet and the mixing chamber to provide a bypass flow path that bypasses the nozzle, and a bypass valve disposed in the bypass conduit and configured to move between an open position and a closed position to selectively open and close the bypass conduit. Wherein, in operation, a first effective flow area of the spray gun outlet creates a first back pressure at the jet pump, thereby implementing a high pressure operating mode in which the pressurized primary fluid flows through the jet pump and exits through the fluid outlet of the jet pump. Wherein, in operation, a second effective flow area of the spray gun outlet that is greater than the first effective flow area creates a second back pressure less than the first back pressure at the jet pump, thereby implementing a high flow operating mode in which the pressurized primary fluid flows through the jet pump and entrains a secondary fluid supplied through the secondary fluid inlet from the fluid source so that the secondary fluid also flows through the jet pump, resulting in a combined fluid flow of the primary fluid and the secondary fluid exiting through the fluid outlet of the jet pump. Wherein, in the high pressure operating mode, the bypass valve is in the open position and the pressurized primary fluid flows through both the nozzle and the bypass flow path to the fluid outlet of the jet pump and wherein, in the high flow operating mode, the bypass valve is in the closed position.
Another embodiment of the invention relates to a water pump including a pumping mechanism for pressurizing a primary fluid flow, the pumping mechanism including a pump inlet for receiving fluid from a fluid source and a pump outlet for supplying a pressurized primary fluid and a jet pump including a primary fluid inlet fluidly coupled to the pump outlet, a secondary fluid inlet configured to be coupled to a fluid source, and a fluid outlet. Wherein, in operation, at a first back pressure at the jet pump, a high pressure operating mode is implemented in which the pressurized primary fluid flows through the jet pump and exits through the fluid outlet of the jet pump. Wherein, in operation, at a second back pressure that is less than the first back pressure at the jet pump, a high flow operating mode is implemented in which the pressurized primary fluid flows through the jet pump and entrains a secondary fluid supplied through the secondary fluid inlet from the fluid source so that the secondary fluid also flows through the jet pump, resulting in a combined fluid flow of the primary fluid and the secondary fluid exiting through the fluid outlet of the jet pump.
Another embodiment of the invention relates to a jet pump including a primary fluid inlet configured to be fluidly coupled to a source of a pressurized primary fluid, a secondary fluid inlet configured to be fluidly coupled to a source of a secondary fluid, a fluid outlet, a mixing chamber fluidly upstream of the fluid outlet and fluidly coupled to the secondary fluid inlet, a nozzle having a restriction, wherein the nozzle is fluidly coupled between the primary fluid inlet and the fluid outlet so that the pressurized primary fluid flows through the restriction prior to entering the mixing chamber, a bypass conduit fluidly coupled to the mixing chamber to provide a bypass flow path that bypasses the nozzle, and a bypass valve disposed in the bypass conduit and configured to move between an open position and a closed position to selectively open and close the bypass conduit. Wherein the bypass valve is configured to move between the open position and the closed position in response to a back pressure at the jet pump. Wherein, at a first back pressure at the jet pump, the bypass valve is in the open position and at a second back pressure at the jet pump that is less than the first back pressure, the bypass valve is in the closed position.
Another embodiment of the invention relates to a jet pump kit for use with a water pump including a jet pump including a primary fluid inlet configured to be fluidly coupled to a pump outlet of a water pump to receive a pressurized primary fluid, a secondary fluid inlet configured to be fluidly coupled to a secondary fluid supply to receive a secondary fluid, and a fluid outlet, and a spray gun including a spray gun outlet having a variable effective flow area.
Another embodiment of the invention relates to a jet pump kit for use with a water pump including a jet pump including a primary fluid inlet configured to be fluidly coupled to a pump outlet of a water pump to receive a pressurized primary fluid, a secondary fluid inlet configured to be fluidly coupled to a secondary fluid supply to receive a secondary fluid, and a fluid outlet, a first spray gun including a spray gun outlet having a first effective flow area, and a second spray gun including a spray gun outlet having a second effective flow area that is greater than the first effective flow area.
Another embodiment of the invention relates to a pressure washer including a prime mover, a water pump coupled to the prime mover, the water pump including a pump inlet for receiving fluid from a fluid source and a pump outlet for supplying a pressurized primary fluid, a jet pump including a primary fluid inlet fluidly coupled to the pump outlet, a secondary fluid inlet configured to be coupled to the fluid source, and a fluid outlet, a first spray gun configured to be fluidly coupled to the fluid outlet of the jet pump, the first spray gun having a first effective flow area, and a second spray gun configured to be fluidly coupled to the fluid outlet of the jet pump, the second spray gun having a second effective flow area that is greater than the first effective flow area. Wherein, in operation, with the first spray gun fluidly coupled to the fluid outlet, the first effective flow area creates a first back pressure at the jet pump, thereby implementing a high pressure operating mode in which the pressurized primary fluid flows through the jet pump and exits through the fluid outlet of the jet pump. Wherein, in operation, with the second spray gun fluidly coupled to the fluid outlet, the second effective flow area of the spray gun outlet greater creates a second back pressure that is less than the first back pressure at the jet pump, thereby implementing a high flow operating mode in which the pressurized primary fluid flows through the jet pump and entrains a secondary fluid supplied through the secondary fluid inlet from the fluid source so that the secondary fluid also flows through the jet pump, resulting in a combined fluid flow of the primary fluid and the secondary fluid exiting through the fluid outlet of the jet pump.
Another embodiment of the invention relates to a method of varying flow in response to back pressure including providing a pressurized fluid to a jet pump, creating a first back pressure at the jet pump, implementing a high pressure operating mode in response to the first back pressure in which the pressurized fluid flows through the jet pump, creating a second back pressure at the jet pump, wherein the second back pressure is less than first back pressure, and implementing a high flow operating mode in response to the second back pressure in which the pressurized fluid flows through the jet pump and entrains a secondary fluid to result in a combined fluid flow exiting the jet pump.
Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.
The invention will become more fully understood from the following detailed description, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like elements, in which:
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
Referring to
Referring to
Referring to
The secondary fluid inlet 230 allows secondary fluid to enter the mixing chamber 220. The secondary fluid inlet 230 is fluidly coupled to a fluid supply. In a preferred embodiment, the secondary fluid inlet 230 and the pump inlet 128 share a common fluid supply (e.g., a garden hose spigot or inlet hose). In some embodiments, the secondary fluid inlet 230 includes a low-pressure, garden-hose style fitting. In other embodiments, inlet 230 is fed from a tee fitting 255 provided upstream of the pump that diverts or branches flow from a water source (e.g., a spigot connected to a municipal water supply or well) into two streams. The first stream is provided to the pump inlet 128, the second stream is provided to the secondary fluid inlet 230. In some operating modes, secondary fluid flows through the secondary inlet 230 into the mixing chamber 220, where the secondary fluid is entrained with the primary fluid exiting the nozzle 215 at the outlet 235, resulting in a combined fluid flow that exits the flow multiplier 200 through the fluid outlet 225. In some embodiments, the fluid outlet 225 includes a high-pressure fitting.
Referring to
Referring to
In some embodiments, the at least two nozzles 265 and 270 are different settings of the spray gun 118 and can be selected by the user by twisting, clicking, or otherwise moving between positions (e.g., a turret nozzle). In other embodiments, an individual nozzle 265 or 270 is selected and attached to the spray gun by a fitting (e.g., a quick-connect fitting). In other embodiments, each nozzle is a component of a distinct spray gun, so that a first spray gun includes nozzle 265 and a second spray gun includes nozzle 270. In other embodiments, a single nozzle (e.g., a variable nozzle) can be adjusted (e.g., by twisting, clicking, or otherwise moving) to resize the effective flow area of the single nozzle, thereby providing multiple settings equivalent to the at least two nozzles 265 and 270 described above.
In use, the water pump 116 pumps primary fluid received through the pump inlet 128 and outputs the primary fluid at an increased pressure through the pump outlet 130, thereby developing pressurized primary fluid due to the restrictions present downstream of the pump outlet 130 (e.g., the restriction created by the nozzle and/or other downstream components currently in use). In some embodiments, the water pump 116 is capable of developing pressures of up to 500 pounds per square inch (“psi”), or in other embodiments, 5000 psi and above. In some embodiments, the water pump 116 is capable of developing pressures in a range of 1000-5000 psi, preferably 1500-4000 psi. In some embodiments, the water pump 116 is capable of developing pressures of 100 psi or more.
As shown in
As shown in
The operating mode is selected by changing the nozzle of the spray gun 118 and thereby changing the back pressure at the flow multiplier 200 (e.g., in the mixing chamber 220). The user is able to quickly and easily change between the high flow and high pressure operating modes by simply switching between the appropriate nozzles. There is no need to adjust a switch, dial, or other interface at the body of the pressure washer. Multiple high pressure operating modes and multiple high flow operating modes are possible, with each operating mode associated with a different nozzle having a different effective flow area.
With reference to
The flow multiplier 200 can be included as a component of a pressure washer 110, included as a component of a water pump 116, included as a component of a flow multiplier kit that allows a user to retrofit a pressure washer, incorporated into a spray gun 118, or commercialized in other appropriate forms. In some embodiments, the flow multiplier kit includes the flow multiplier 200 and a spray gun 118. The spray gun outlet has a variable effective flow area (e.g., multiple nozzles able to be inserted into the spray gun 118, a turret including multiple nozzles, a single nozzle with a variable effective flow area) or the kit includes multiple spray guns where each spray gun has a different effective flow area to allow the user to select among high-pressure operating modes and high-flow operating modes. The kit can also include a high flow hose or conduit 120. The delivery conduit 120 included in many conventional pressure washers is a one quarter inch high pressure hose. To properly accommodate the increased flow provided by the flow multiplier, a high flow pressure hose or delivery conduit 120 (e.g., three eighths of an inch high pressure hose) is preferred. In some embodiments, a one quarter inch high pressure hose is used as the delivery conduit 120. In some embodiments, the kit can include two hoses or conduits (i.e., a high flow conduit and a high pressure conduit).
In some embodiments, a jet pump is used as the flow multiplier. One type of jet pump is illustrated in
It is believed that a jet pump functions best as a flow multiplier. However, it is possible that a venturi may be used as a flow multiplier. An advantage of the jet pump is that it includes fewer moving parts, and in some embodiments, no moving parts, than commercially available variable flow rate fluid pumps (e.g., mechanical fluid pumps providing variable displacement or other ways of varying fluid flow rate). Another advantage of the jet pump is that it uses a relatively small volume of primary fluid to entrain a relatively large volume of secondary fluid, resulting in a relatively large volume of combined fluid primarily consisting of the secondary fluid. A venturi uses a relatively large volume of primary fluid to entrain a relatively small volume of secondary fluid, resulting in a relatively large volume of combined fluid primarily consisting of the primary fluid. For example, the venturi in a carburetor uses a relatively large volume of air to entrain a relatively small volume of fuel to create an air-fuel mixture that is primarily air. In some embodiments, a blade driven pump (e.g., a turbo-charger) is used as the flow multiplier. A blade or impeller is positioned in the pressurized fluid flow and used to drive a pump to supply a secondary fluid. The turbo-charger can be selectively activated by a user input (e.g., a switch) or in response to a pressure differential somewhere in the pressure washer system (e.g., in response to the pressure change resulting from changing the effective flow area of the spray gun nozzle); otherwise, the turbo-charger can simply freewheel and provide no additional flow. Alternatively, the turbo-charger is positioned in a bypass flow path through which the pressurized fluid flow does not flow when no additional flow is needed. When the turbo-charger is activated (e.g., as described above), a valve directs at least a portion of the pressurized fluid flow through the bypass flow path and to the turbo-charger to provide additional flow. In some embodiments, when the turbo-charger is activated, the entire flow of pressurized fluid is directed through the bypass flow path. In other embodiments, when the turbo-charger is activated, a portion of the pressurized fluid flow is directed through the bypass flow path. In other embodiments, the flow multiplier is a structure that uses the kinetic energy of a first fluid stream to entrain or pump a second fluid stream.
The flow multiplier 200 allows a pressure washer 110 to provide a high volume or “boosted” flow without having to make mechanical changes to the water pump 116. Typically, to increase flow from a water pump 116, the pump would need to be changed mechanically, for example, by increasing piston stroke, changing the displacement of the pump, or operating the pump at higher speeds. To then operate a water pump 116 at different flows requires the ability to vary the mechanical changes to the water pump 116, for example, mechanically varying the piston stroke, mechanically varying the displacement, or operating the pump at varying speeds. The flow multiplier 200 eliminates the mechanical complexity that would otherwise be needed to operate the water pump 116 of a pressure washer 110 at different flow outputs by using the pressurized fluid output from the water pump 116 to create varying fluid flow outputs from the flow multiplier 200 in response to the back pressure from the spray gun 118. A single flow rate water pump (e.g., the water pump 116) and a flow multiplier 200 can provide cost savings when compared to other variable flow rate pumps (e.g., variable displacement, variable stroke, variable speed, etc.). Back pressure from the spray gun 118 can easily be changed by varying the effective flow area of the spray gun outlet. This allows a user to easily change between high flow and high pressure operating modes by simply changing the effective flow area of the spray gun outlet (e.g., by changing nozzles, adjusting an adjustable nozzle, or changing spray guns). Alternatively, a user adjustable restrictor (e.g., a valve, a dial, etc.) could be provided downstream of the flow multiplier 200 to vary the back pressure at the flow multiplier 200 and thereby change between high flow operating modes and high pressure operating modes.
Referring to
Optional chemical system 335 includes a reservoir 350 fluidly coupled to the secondary fluid conduit 250 by a conduit 355 and a valve 360. The reservoir 350 contains a chemical, such as soap, detergent, spot-free rinse, a herbicide, polish, etc. The valve 360 is a two-position diverting valve that allows the user to select a “chemical” mode in which the chemical is allowed to flow through the valve 360 to the secondary fluid inlet 230 and the flow of secondary fluid through the valve 360 is stopped and an “off” mode in which secondary fluid is allowed to flow through the valve 360 and the flow of chemical through the valve 360 is stopped. Alternatively, the secondary fluid is allowed to mix with the chemical flow in the chemical mode or in a “mixed mode” in embodiments including a three-position valve. A restrictor 365 (e.g., a metering orifice) is positioned along the conduit 355 between the reservoir 350 and the valve 360. The restrictor 365 limits the amount of flow of chemical from the reservoir 350. In use, in the high-flow operating mode using nozzle 270 and with the valve 360 in the chemical mode, the pressure difference between the low pressure zone in the mixing chamber 220 and the reservoir 350 causes a flow of chemical from the reservoir 350 to the secondary fluid conduit 250. The chemical flow is entrained with the primary fluid in the mixing chamber 220, thereby providing a combined fluid flow including the primary fluid and the chemical to the spray gun 118. In some embodiments, a check valve is positioned in conduit 355 to prevent secondary fluid from flowing to the reservoir 350.
Optional chemical system 340 includes a reservoir 370 fluidly coupled to the secondary fluid conduit 250 by a conduit 375 and a venturi 380. The reservoir 370 contains the chemical to be added to the secondary fluid. An on/off valve 385 is positioned along the conduit 375 between the reservoir 370 and the venturi 380 and is movable between an “on” position in which the conduit 375 is open and an “off” position in which the conduit 375 is closed. Alternatively, valve 385 is variable to allow the user to meter the flow of chemicals from the reservoir 370. A check valve 390 is positioned along the conduit 375 between the on/off valve 385 and the venturi 380 to prevent back flow from the venturi 380 towards the reservoir 370. In use, in the high-flow operating mode with the on/off valve 385 in the on position, the flow of secondary fluid through the venturi 380 creates a Venturi effect that draws the chemical through the conduit 375 so that the chemical mixes with the secondary fluid flow. This mixed flow of secondary fluid and chemical is then entrained with the primary fluid flow in the mixing chamber 220, thereby providing a combined fluid flow including the primary fluid, the secondary fluid, and the chemical to the spray gun 118. In some embodiments, the chemical systems 335 and 340 include one or more additional reservoirs containing different chemicals than the first reservoir. The user may select among the reservoirs by actuating a selector valve that fluidly couples one of the reservoirs to the appropriate supply conduit.
The optional differential pressure-activated bypass 345 may be necessary if in the high-pressure operating mode, the flow multiplier 200 causes an unacceptable energy loss to the pressurized primary fluid flow and the output pressure from the spray gun 118 suffers unacceptable losses. If this is true, the differential pressure-activated bypass 345 allows a portion of the pressurized primary fluid flow to bypass the flow multiplier 200 in the high-pressure operating mode. The differential pressure-activated bypass 345 includes a conduit 395 in fluid communication with the water pump 116 and the delivery conduit 120 to partially bypass the flow multiplier 200 and a differential pressure-activated valve 400 (e.g., a needle and seat valve). The piston in the valve 400 is normally in the open position. In use, in the high-flow operating mode, a relatively large pressure differential occurs across the valve 400 (i.e., a relatively low pressure combined fluid flow at the outlet of the bypass conduit 395 and a relatively high pressure primary fluid low at the inlet of the bypass conduit 395, which closes the valve 400. In use, in the high-pressure operating mode, the differential pressure across the valve 400 is relatively low (i.e., relatively high pressure primary fluid flow at both the inlet and outlet of the bypass conduit 395) and the spring dominates, causing the valve 400 to open, thereby allowing the pressurized primary fluid flow to bypass the flow multiplier 200 through the conduit 395. In use, in the high-flow operating mode, the valve 400 is closed.
Referring to
The jet pump 500 is configured to operate in one of two different modes, a high pressure mode and a high flow mode, in response to the back pressure at the jet pump 500 (e.g., the back pressure at the fluid outlet 525, the mixing chamber 520, the primary fluid nozzle 510). When the back pressure is above a threshold pressure or pressure range, the high pressure mode is implemented. When the back pressure is below the threshold pressure or pressure range, the high flow mode is implemented. The back pressure at the jet pump 500 is established by the restrictions on flow downstream of the jet pump 500. For example, as will be discussed in more detail below, the back pressure at the jet pump 500 can be controlled by varying the effective flow area of a spray gun of a pressure washer. A spray gun including a nozzle with a relatively small effective flow area will create a relatively high back pressure at the jet pump 500, thereby implementing the high pressure operating mode, and a spray gun including a nozzle with a relatively large effective flow area will create a relatively low back pressure at the jet pump 500, thereby implementing the high flow operating mode.
The primary fluid inlet 505 is configured to be coupled to a source of pressurized primary fluid (e.g., the pump outlet 130). In some embodiments, the primary fluid inlet 505 is configured to be directly coupled to the pump outlet 130. In other embodiments, the primary fluid inlet 505 and/or the jet pump 500 are integrally formed with the water pump 116 (e.g., as a single unitary component). In other embodiments, the primary fluid inlet 505 is configured to be indirectly coupled to the pump outlet 130 (e.g., by a high pressure hose or conduit). The secondary fluid inlet 530 is configured to be fluidly coupled to a source of fluid (e.g., a municipal water supply or well). In some embodiments, the secondary fluid inlet 530 is configured to be fluidly coupled to the source of fluid by a low-pressure hose or conduit (e.g., a garden hose connected to a spigot). In a preferred embodiment, the primary fluid and the secondary fluid are drawn from the same source. For example, the pump inlet 128 of the pressure washer 110 and the secondary fluid inlet 530 of the jet pump 500 are connected to the same spigot (e.g., by a garden hose and a tee fitting 815). The secondary fluid inlet 530 makes secondary fluid available to the mixing chamber 520.
As shown in
In the high pressure operating mode, the back pressure at the jet pump 500 (e.g., in the mixing chamber 520) caused by components downstream of the jet pump 500 (e.g., a spray gun, spray gun nozzle, etc.) dominates or overcomes the low pressure zone in the mixing chamber 520 that would otherwise be created by the high pressure primary fluid flow exiting the nozzle 510, thereby preventing secondary fluid from entering the mixing chamber 520. In the high pressure operating mode, a check valve 557 at or upstream of the secondary fluid inlet 530 is closed. In some embodiments, in the high pressure operating mode, a de minimis amount of secondary fluid may enter the mixing chamber 520.
The bypass conduit 555 ensures that the jet pump 500 provides an acceptable flow of pressurized fluid in the high pressure operating mode. Without the bypass conduit 555, all of the pressurized primary fluid would flow through the restriction 515, which, in some embodiments, could cause an unacceptable drop in the flow of pressurized fluid delivered from the jet pump 500. The bypass valve 560 moves between an open position (
The bypass valve 560 includes a movable piston 567, a seat or pintle 570, and a spring or biasing member 575. The piston 567 includes an opening 580 on the upstream side of piston 567 and a chamber 585 on the downstream side of the piston 567. In some embodiments, the opening 580 has a smaller diameter than the chamber 585. The chamber 585 is sized and shaped to receive the seat 570 so that with the piston 567 in the closed position, the seat 570 contacts or engages the surface or surfaces defining the chamber 585 to prevent fluid from flowing through the piston 567, thereby closing the bypass valve 560. In the open position, the piston 567 is moved away from the seat 570 such that bypass valve 560 is open and fluid may flow through the piston 567 via the opening 580 and the chamber 484. The opening 580 is sized to both set the threshold pressure difference at which the bypass valve 560 changes positions and to provide sufficient fluid flow through the open bypass valve 560 to ensure that the jet pump 500 provides an acceptable flow of pressurized fluid in the high pressure operating mode. The spring 575 biases the piston 567 to the open position.
In some embodiments, the bypass conduit 555 has a smaller diameter upstream of the bypass valve 560 than it does at the bypass valve 560. This change in diameter forms a shoulder or seat against which the piston 567 is held in the open position. This shoulder also reduces the available fluid surface area of the face of the piston 567 for the pressurized primary fluid to push against when the piston 567 is in the open position (
As shown in
As shown in
With the bypass valve 560 closed, the pressurized primary fluid flows through the primary fluid chamber 535 and through the primary fluid nozzle 510. The restriction 515 is the location where the diameter of the passage through the primary fluid nozzle 510 is at its minimum. In some embodiments, the primary fluid nozzle 510 includes a converging portion upstream of the restriction 515 where the diameter of the passage narrows in the direction of fluid flow towards the restriction 515 and a diverging portion downstream of the restriction 515 where the diameter of the passage widens in the direction of fluid flow. In other embodiments, the diverging portion is omitted and fluid exits the nozzle at the restriction 515 (as shown in
The restriction 515 creates a high velocity jet of pressurized primary fluid that exits the primary fluid nozzle 510 to the mixing chamber 520. The restriction 515 converts pressure to velocity. The high velocity jet of pressurized primary fluid creates a vacuum or low pressure zone in the mixing chamber 520 through a Bernoulli or Venturi effect or a combination of the two. The vacuum or low pressure zone and/or the pressure differential between the low pressure zone and the secondary fluid made available via the secondary fluid inlet 530 is sufficient to pull secondary fluid into the mixing chamber 520 through the secondary fluid inlet 530. Also, the check valve 557 is opened. Once in the mixing chamber 520, the secondary fluid is entrained with the pressurized primary fluid to form a combined high-volume fluid stream or flow which has a greatly increased volume of flow as compared to the pressurized primary fluid on its own. The high velocity jet of pressurized primary fluid contacts the secondary fluid pulled into the mixing chamber 520, thereby transferring kinetic energy to the secondary fluid. In this way, the pressurized primary fluid entrains the secondary fluid to create the combined high-volume fluid flow or stream. This combined high-volume fluid stream flows out of the mixing chamber 520 to exit the jet pump 500 through the fluid outlet 525
As shown in
The step 545 has the minimum diameter of the outlet passage 542. The diameter of the outlet passage 542 downstream of the step 545 (e.g., an exit portion diameter) is greater than the diameter at the step 545. One or more apertures or openings 600 (e.g., multiple opening arranged around the circumference of the outlet passage 542) extend from the annular chamber 550 to the outlet passage 542. The openings 600 are located downstream of the step 545. The increased diameter of the outlet passage 542 downstream of the step 545 helps to minimize the turbulence or other interference that results from the second stream of pressurized fluid entering the outlet passage 542 through the openings 600 when in the high pressure operating mode. The step 545 is structured as a venturi for chemical injection, as will be described in more detail below. Also, the step 545 creates a venturi-effect in the high flow operating mode and the low pressure zone downstream of the step is believed to help move the piston 567 to the closed position when transitioning from the high pressure operating mode to the high flow operating mode.
Referring to
Referring to
For example, in some embodiments, the rotating turret 715 includes a first nozzle 716 having a first effective flow area that creates a relatively high back pressure at the jet pump 500, thereby implementing the high pressure operating mode, a second nozzle 717 having a second effective flow area larger than the first effective flow area that creates a relatively low back pressure above the threshold chemical pressure at the jet pump 500, thereby implementing the high flow operating mode and not allowing chemicals to be added to the combined high-volume fluid stream, and a third nozzle 718 having a third effective flow area larger than the second effective flow area that creates a relatively low back pressure below the threshold chemical pressure at the jet pump 500, thereby implementing high flow operating mode and adding chemicals to the combined high-volume fluid stream. The rotating turret 715 allows the user to switch between different spray patterns and output fluid flows simply by changing the selected nozzle. For example, a high pressure nozzle (e.g., a 0° nozzle or a 25° fan) can be selected for high pressure pressure-washing applications like cleaning siding and then a high flow nozzle (with or without adding chemicals) can be selected for high flow tasks like cleaning second story windows or washing a car. The user is able to switch between tasks directly at the spray gun 700, using the flow control valve 705 to start and stop the fluid flow as needed and the rotating turret 715 to select the appropriate operating and chemical mode.
In some embodiments, the rotating turret 715 is replaced with a fluid outlet having a fitting capable of receiving removable nozzles one at a time (e.g., similar to spray gun 118 and nozzles 265 and 270 described above). Multiple removable nozzles each having different effective flow areas are available to switch between different spray patterns and output fluid flows simply by changing the selected nozzle, like with the rotating turret 715.
A chemical container 720 is secured to body of the spray gun 700 and is fluidly coupled to the jet pump 500 at the chemical inlet 565. In some embodiments, the chemical container 720 is removably secured to the body of the spray gun 700 so that it can be removed and refilled or replaced as necessary.
As shown in
As shown in
Referring to
Referring to
As shown in
In some embodiments, a common or shared pump housing encloses the jet pump 500 and the pumping mechanism of the water pump 116. In some embodiments, this pump housing includes a mounting structure for attaching the water pump 116 to a prime mover. In some embodiments, the jet pump 500 and at least a portion of the pumping mechanism of the water pump 116 (e.g., a cylinder or piston block, a housing, a crankcase, etc.) are formed as a single (e.g., integral, unitary) component (e.g., a single casting). A flow multiplier (e.g. the jet pump 500) “integrated” with or “integral” to a water pump (e.g., the water pump 116) is a single unitary component in which the flow multiplier and water pump share a common housing enclosing the flow multiplier and the pumping mechanism of the water pump and/or in which the flow multiplier and at least a portion of the pumping mechanism of the water pump (e.g., a cylinder or piston block, a housing, a crankcase, etc.) are formed as a single (e.g., integral, unitary) component (e.g., as a single casting, as a single molded component, etc.).
Referring to
As shown in
In some embodiments, the jet pump 500 is integrated within an output conduit or hose that fluidly couples the pump outlet (e.g., pump outlet 130) to a spray gun.
When the jet pump 500 is not secured to a spray gun (e.g., pressure washers 900 and 1000), a single output hose or conduit having a single fluid passage or path may be used to fluidly couple the fluid outlet 525 to a spray gun. Preferably, this output hose is designed to handle both the high pressure and the high flow operating modes (e.g., a high pressure hose providing sufficient flow capacity for the high flow operating modes).
The jet pump 500 can be sold separately from a pressure washer to allow the user to change an existing pressure washer into a pressure washer capable of providing high flow and high pressure operating modes and chemical injection. The jet pump 500 can be sold on its own or as part of a kit including the jet pump 500, a spray gun (e.g., the spray gun 700), and any hoses or conduits necessary to fluidly couple the jet pump 500 to the spray gun or to fluidly couple the pressure washer to the jet pump 500. A user may use such a kit to convert a standard or conventional pressure washer to a variable flow pressure washer by coupling the primary fluid inlet 505 of the jet pump 500 to the pump outlet 130 of the water pump 116 (e.g., by a conduit or hose, directly coupled, etc.), coupling the secondary fluid inlet 530 of the jet pump 500 to a supply conduit or hose configured to be coupled to a source of fluid, and coupling the fluid outlet 525 to an output conduit or hose or to a spray gun (e.g., the spray guns 740 and 760). The user may also couple the jet pump 500 to the body of the pressure washer (e.g., to the water pump 116, to frame 112, to the base plate 122, to the prime mover 114, etc.) or to a spray gun (e.g. the spray guns 740 and 760). The tee fitting 815 may be included in the kit so that a common fluid source is coupled to both the secondary fluid inlet 530 and the pump inlet 128 of the water pump 116.
The jet pump 500 is suitable for use with gas pressure washers (i.e., pressure washers having an internal combustion engine as the prime mover) and for use with electric pressure washers (i.e., pressure washers having an electric motor as the prime mover). Gas pressure washers typically have a higher rated output (e.g., in terms of pressure and/or flow rate that can be provided) than electrical pressure washers. The jet pump 500 allows the pressure washer to provide a high flow operating mode that would not otherwise be available from a standard or conventional pressure washer alone. At a minimum, pressure washers are rated at 100 psi. Pressure washers may be rated up to 4000 psi and above. For example, for a gas pressure washer rated at 3000 psi at 2.7 gpm, the jet pump 500 can provide a high flow operating mode producing 400 psi at 5 gpm. For an electric pressure washer rated at 1700 psi at 1.3 gpm, the jet pump 500 can provide a high flow operating mode producing 175 psi at 4.7 gpm. The jet pump 500 about doubles the flow rate for a gas pressure washer and about quadruples the flow rate for an electric pressure washer.
Referring to
In some embodiments, a pressure washer includes a frame, a prime mover supported by the frame and including a power takeoff, a water pump coupled to the power take off and including a pump inlet and a pump outlet, a supply conduit fluidly coupled to the pump inlet and configured to be coupled to a primary fluid supply, a flow multiplier including a mixing chamber having a fluid outlet, a primary fluid inlet fluidly coupled to the pump outlet, a primary fluid restriction downstream of the primary fluid inlet, a primary fluid nozzle downstream of the primary fluid restriction, the primary fluid nozzle extending into the mixing chamber and having a nozzle outlet located within the mixing chamber, and a secondary fluid inlet in fluid communication with the mixing chamber, a secondary fluid conduit fluidly coupled to the supply conduit and the secondary fluid inlet, a check valve along the secondary fluid conduit and located upstream of the secondary fluid inlet, the check valve configured to close the secondary fluid conduit in response to a mixing chamber pressure above a threshold pressure, a delivery conduit fluidly coupled to the fluid outlet, and a spray gun fluidly coupled to the delivery conduit downstream of the fluid outlet, the spray gun including at least two nozzles, the first nozzle having a first flow area and the second nozzle having a second flow area greater than the first flow area, the fluid exiting the spray gun through one of the at least two nozzles. In a high-pressure operating mode, primary fluid flows from the primary fluid source to the water pump through the supply conduit, is pressurized in the water pump, exits the water pump, enters the flow multiplier via the primary fluid inlet, passes through the primary fluid restriction to the primary fluid nozzle, exits the primary fluid nozzle outlet into the mixing chamber, exits the mixing chamber through the fluid outlet, passes through the delivery conduit to the spray gun, and exits the spray gun through the first nozzle, thereby causing the mixing chamber pressure to exceed the threshold pressure. In a high-flow operating mode, primary fluid flows from the primary fluid source to the water pump through the supply conduit, is pressurized by in the water pump, exits the water pump, enters the flow multiplier via the primary fluid inlet, passes through the primary fluid restriction to the primary fluid nozzle, and exits the primary fluid nozzle outlet into the mixing chamber and secondary fluid flows from the supply conduit, through the check valve, and into the mixing chamber through the secondary fluid inlet so that the secondary fluid is entrained with the primary fluid, resulting in a combined fluid flow that exits the mixing chamber through the fluid outlet, passes through the delivery conduit to the spray gun, and exits the spray gun through the second nozzle, thereby maintaining the mixing chamber pressure below the threshold pressure.
The construction and arrangement of the apparatus, systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, some elements shown as integrally formed may be constructed from multiple parts or elements, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a machine, the machine properly views the connection as a machine-readable medium. Thus, any such connection is properly termed a machine-readable medium. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures may show or the description may provide a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on various factors, including software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.
This application is a continuation of U.S. application Ser. No. 13/938,180, filed Jul. 9, 2013, which claims the benefit of U.S. Provisional Application No. 61/679,030, filed Aug. 2, 2012, U.S. Provisional Application No. 61/745,461, filed Dec. 21, 2012, and U.S. Provisional Application No. 61/780,584, filed Mar. 13, 2013, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
828705 | Bode | Aug 1906 | A |
1262539 | Bode | Aug 1906 | A |
1369567 | Smith | Feb 1921 | A |
2678457 | Demo et al. | Jan 1950 | A |
2540240 | Boyle | Feb 1951 | A |
3030890 | Galik | Apr 1962 | A |
3114164 | Riordan | Dec 1963 | A |
3181797 | Hayes | May 1965 | A |
3283352 | Hu | Nov 1966 | A |
3377028 | Bruggeman | Apr 1968 | A |
3383044 | Norstrud et al. | May 1968 | A |
3748678 | Ballou | Jul 1973 | A |
3829024 | Heden | Aug 1974 | A |
4084281 | Smith | Apr 1978 | A |
4089079 | Nicholson | May 1978 | A |
4135860 | Van Nederkassel | Jan 1979 | A |
4207640 | Sekula et al. | Jun 1980 | A |
4227862 | Andrew et al. | Oct 1980 | A |
4238074 | Coons | Dec 1980 | A |
4249282 | Little | Feb 1981 | A |
4373444 | Cunnington | Feb 1983 | A |
4387850 | Gerber | Jun 1983 | A |
4417826 | Floros | Nov 1983 | A |
4461052 | Mostul | Jul 1984 | A |
4507053 | Frizzell | Mar 1985 | A |
4513466 | Keddie et al. | Apr 1985 | A |
4532666 | Smyth | Aug 1985 | A |
4763373 | Sanchez | Aug 1988 | A |
4781537 | Nicodemus et al. | Nov 1988 | A |
4856133 | Sanchez | Aug 1989 | A |
5007127 | Paolo | Apr 1991 | A |
5029758 | Chayer | Jul 1991 | A |
5086975 | Paige | Feb 1992 | A |
5129121 | Gelman | Jul 1992 | A |
5238191 | Gaymon | Aug 1993 | A |
5395052 | Schneider et al. | Mar 1995 | A |
5421520 | Simonette et al. | Jun 1995 | A |
5529460 | Eihusen et al. | Jun 1996 | A |
5619766 | Zhadanov et al. | Apr 1997 | A |
5649334 | Henriquez et al. | Jul 1997 | A |
5741124 | Mazzucato et al. | Apr 1998 | A |
5911256 | Tsai | Jun 1999 | A |
5913982 | Phillips | Jun 1999 | A |
5975423 | Rice et al. | Nov 1999 | A |
6021539 | Zhadanov et al. | Feb 2000 | A |
6164496 | Gregory | Dec 2000 | A |
6189811 | Rudy | Feb 2001 | B1 |
6561481 | Filonczuk | May 2003 | B1 |
6571805 | Hoenisch et al. | Jun 2003 | B2 |
6687924 | Wright et al. | Feb 2004 | B2 |
6688855 | Beckerman | Feb 2004 | B2 |
6857444 | Davis | Feb 2005 | B2 |
6892957 | Bennett et al. | May 2005 | B2 |
6913221 | Moon et al. | Jul 2005 | B2 |
6915541 | Alexander | Jul 2005 | B2 |
6921060 | Weed, Jr. | Jul 2005 | B2 |
7017603 | Rosine et al. | Mar 2006 | B1 |
7080953 | Delaine, Jr. | Jul 2006 | B2 |
7083120 | Gilpatrick et al. | Aug 2006 | B2 |
7217053 | Alexander et al. | May 2007 | B2 |
7222644 | Pianetto et al. | May 2007 | B2 |
7281903 | Reverberi et al. | Oct 2007 | B2 |
7316368 | Moon et al. | Jan 2008 | B2 |
7389949 | Marchand et al. | Jun 2008 | B2 |
7472842 | Gilpatrick et al. | Jan 2009 | B2 |
7762787 | Kawakami et al. | Jul 2010 | B2 |
8444068 | Hahn et al. | May 2013 | B2 |
20040131473 | Lanfredi et al. | Jul 2004 | A1 |
20040231723 | Harrington et al. | Nov 2004 | A1 |
20050013708 | Peeler et al. | Jan 2005 | A1 |
20050017117 | Moon et al. | Jan 2005 | A1 |
20050161538 | Cattaneo et al. | Jul 2005 | A1 |
20050164554 | Cattaneo et al. | Jul 2005 | A1 |
20050241685 | Findley | Nov 2005 | A1 |
20060045752 | Beckman | Mar 2006 | A1 |
20060083634 | Dexter et al. | Apr 2006 | A1 |
20060110265 | Lanfredi et al. | May 2006 | A1 |
20060245941 | Sharp | Nov 2006 | A1 |
20070113368 | Alexander | May 2007 | A1 |
20070114319 | Anderson et al. | May 2007 | A1 |
20070125878 | Hahn et al. | Jun 2007 | A1 |
20070267063 | Davis | Nov 2007 | A1 |
20080014096 | Gilpatrick | Jan 2008 | A1 |
20080050246 | Bevington | Feb 2008 | A1 |
20080061167 | Gansebom | Mar 2008 | A1 |
20080083077 | Alexander et al. | Apr 2008 | A1 |
20080245425 | Alexander | Oct 2008 | A1 |
20080300727 | Zarowny et al. | Dec 2008 | A1 |
20090269218 | Gardner et al. | Oct 2009 | A1 |
20100243086 | Gilpatrick | Sep 2010 | A1 |
20110005024 | Spitler et al. | Jan 2011 | A1 |
20110274570 | Groeger et al. | Nov 2011 | A1 |
20120006431 | Gilpatrick | Jan 2012 | A1 |
20130214059 | Gilpatrick et al. | Aug 2013 | A1 |
20130216402 | Raasch et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
696692 | Sep 2007 | CH |
101450345 | Jun 2009 | CN |
101817005 | Sep 2010 | CN |
88 14 243 | Feb 1989 | DE |
38 40 787 | Jun 1990 | DE |
39 36 689 | Jul 1990 | DE |
195 48 497 | Apr 1997 | DE |
299 08 357 | Aug 2000 | DE |
0 783 923 | Jul 1997 | EP |
1 897 620 | Mar 2008 | EP |
2 225 612 | Jun 1990 | GB |
2225612 | Jun 1990 | GB |
2225612 | Oct 1992 | GB |
07-252879 | Oct 1995 | JP |
H07-252879 | Oct 1995 | JP |
2000-304000 | Oct 2000 | JP |
Entry |
---|
6×6 Jet Pump Brochure, Offshore Cleaning Systems, 2011, 4 pages. |
AZ Sludge Hog Brochure and Drawings, undated, http://www.cccmix.com/az-sludge-hog/ retrieved on Dec. 5, 2012, 3 pages. |
Blair et al., Special Investigation: Design of an Intake Bellmouth, 4 pages. |
Ejectors & Ejector Theory, Aug. 2002, 4 pages. |
Ejectors and Jet Pumps Design and Performance for Incompressible Liquid Flow, IHS, Mar. 2007, 104 pages. |
Electric Jet Pump Pressure Washers Problems & Solutions, http://www.fixya.com/tags/jet_pump/pressure_washers/electric, retrieved on Jul. 2, 2013, 6 pages. |
Energy Tips-Pumping Systems, Pumping Systems Tip Sheet #12, Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements, U.S. Department of Energy, May 2007, 2 pages. |
Flotec 3/4 HP Thermoplastic Shallow-Well Jet Pump, http://www.homedepot.com/p/Flotec-3-4-HP-Thermoplastic-Shallow-Well-Jet-Pump-FP4022/100212883#.UVs_1aJwfTo, retrieved on Jul. 2, 2013, 2 pages. |
Garden Hose Centrifugal Pump | BIC Superstore, Flint Walling/Star HPP360 Garden Hose Centrifugal Pump, printed on Jan. 6, 2009, from Internet address: http://www.bicsuperstore.com/Garden-Hose-Centrifugal-Pump/M/B000DZKZ02.htm, 3 pages. |
Garden Hose Comfort Grip Nozzle 7 Pattern #594 by Gilmour Manufacturing, http://www.hardwareandtools.com/invt/3774379, retrieved on Jan. 6, 2009, 4 pages. |
Gauges, Water Pumps, and Flow Meters from Premium Water Filters, Premium Water Filters, printed on Jan. 6, 2009, from Internet address: http://www.premium-water-filters.com/gauges-pumps.htm, 12 pages. |
Homelite Hydrosurge 1700 PSI Electric Pressure Washer, published May 30, 2012, author: The Home Depot, 2 pages, available at http://www.youtube.com/watch?v=SEEay2Qtxc0. |
Invitation to Pay Additional Fees for PCT Application No. PCT/US2013/052001, dated Feb. 7, 2014, 11 pages. |
Lisowski et al., CFD Modelling of a Jet Pump with Circumferential Nozzles for Large Flow Rates, Archives of Foundry Engineering, Mar. 2010, 4 pages. |
PowerCare Pump-n-Vac Attachment Video, published Jun. 12, 2012, author; Home Depot, available at http://www.youtube.com/watch?v=jv9zazxIRzw, 2 pages. |
Roto-Jet Pump Brochure, Weir Specialty Pumps, 2009, 2 pages. |
Sanger, Cavitating Performance of Two Low-Area-Ratio Water Jet Pumps Having Throat Lengths of 7.25 Diameters, May 1968, 42 pages. |
Stolyarov, A Way of Increasing the Efficiency of Liquid Ejectors, Prikladnaya Mekhanika, Oct. 9, 1965, 2 pages. |
Watanawanavet, CFD Optimization Study of High-Efficiency Jet Ejectors, May 2008, 300 pages. |
Watanawanavet, Optimization of a High-Efficiency Jet Ejector by Using Computational Fluid Dynamic (CFD) Software, May 2008, 54 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US15/63487, dated Jan. 29, 2016, 12 pages. |
English-language machine translation of JP H07-252879, Kanematsu Eng. (Oct. 3, 1995). |
English-language machine translation of JP 2000-304000, Arimitsu Ind. (Oct. 31, 2000). |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/052001, dated Feb. 3, 2015, 19 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/052001, dated May 9, 2014, 26 pages. |
Number | Date | Country | |
---|---|---|---|
20140246517 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61679030 | Aug 2012 | US | |
61745461 | Dec 2012 | US | |
61780584 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13938180 | Jul 2013 | US |
Child | 14274334 | US |