The present disclosure is directed to apparatus for capping plastic bottles, and particularly to apparatus for capping hot-filled plastic bottles having a threaded finish suitable for receiving an internally threaded cap. The present disclosure is additionally directed to such apparatus that would be used to apply an internally threaded cap to a plastic bottle having a molded finish that included a support ring situated below the threaded portion of the finish.
In a conventional hot-fill process employing plastic bottles, a hot beverage product is introduced into a plastic bottle, typically filling most of the bottle. The fluid is heated during a pasteurization or sterilization process to remove bacteria or other contamination, either immediately prior to or after the product is introduced into the plastic bottle. The plastic bottle is then hermetically sealed with a cap while the product is still hot. Subsequent to capping, the temperature of the liquid is allowed to cool from a high of about 185° Fahrenheit, the typical hot-fill temperature, to about 40° Fahrenheit, the typical refrigeration temperature. The change in temperature, from hot to cold, decreases the internal pressure of the sealed bottle and can creates a sub-atmospheric pressure or partial vacuum within the bottle primarily as a result of the thermal contraction of the liquid in the bottle. If the bottle cannot structurally support the pressure difference between the external ambient pressure and the lower internal pressure within the bottle, the decrease in internal pressure can cause the geometry of the bottle to distort and/or deform.
Current bottles are generally engineered to collapse at specific locations with vacuum panels and/or flexible bases to compensate for the decrease in internal pressure. These vacuum-reactive mechanisms are very efficient to maintain a balanced pressure and keep the remaining structural geometry of the bottle from collapsing. Vacuum panels, however, are sometimes difficult to mold. Further, labeling of the bottle is difficult because bottles employing raised and/or recessed vacuum panels often possess reduced surface area suitable for receiving a label. The reduction of suitable surface area also restricts the ornamental design of the label, restricts the placement of the label, and often leads to unattractive wrinkling of the label. Thus, there is a desire to employ in a hot-fill process bottles that avoid the use of any vacuum-reactive surface features so that the labeling process and end product can be more satisfactory to both the bottler and the consuming public.
Bottles that avoid the use of any vacuum-reactive surface features can be employed in a hot-fill process by suitably pressurizing the headspace of the filled bottle prior to applying and sealing any closure or cap. By suitably pressurizing the headspace prior to applying and sealing any closure, the pressure within the bottle will remain sufficient to avoid any distortion or deformation of the bottle during and subsequent to the cooling of the bottle and its contents from the usual hot-fill temperature down to the usual refrigerated temperature. Thus, there is a need for suitable equipment for pressurizing the headspace of the filled bottle prior to applying any closure that requires only the minimum of change to the fill line currently employed in hot-fill operations. There is also a need for such equipment that can be used on a variety of styles of plastic bottles, and can run at or close to the current speed of the fill line currently employed in hot-fill operations.
An apparatus meeting these needs can include a sealing ring having a first surface for engaging a surface of known dimension immediately below the cap-engaging portion of a plastic bottle. One particularly suitable surface is presented by the support ring that is typically present at the bottom of the finish and above the blow-molded portions of the bottle. The apparatus can also include a clamping mechanism for moving the sealing ring from a position spaced from the surface of known dimension to a position engaging the surface of known dimension. A chuck can also be provided for holding a cap in a position to engage a finish on the plastic bottle. A pressure chamber can surround the chuck and can have a sealing surface for contacting a second surface of the sealing ring. The sealing surface of the chuck can be in sliding contact with the second surface of the sealing ring. A source of pressure can be coupled to the pressure chamber for introducing a volume of gas or vapor at super-atmospheric pressure into the chamber, preferably only when the sealing surface of the pressure chamber is in contact with the sealing ring and the sealing ring is engaging the surface of known dimension. The engagement between the sealing ring first surface and the surface of known dimension needs only to be sufficient to permit the build-up of pressure within the chamber and head space of the plastic bottle to a desired level. Apparatus can also be provided to rotate the chuck within the pressure chamber while the chamber is subjected to the gas or vapor at super-atmospheric pressure to seal the gas or vapor within the headspace of the hot-filled plastic bottle with the cap at the elevated charging pressure.
One feature of this apparatus is the ability to select the super-atmospheric pressure to which a given bottle is charged. In some instances the charging pressure may be selected such that upon cooling to the refrigeration temperature, the pressure within the bottle is approximately the same as normal atmospheric pressure so that removal of the cap from the bottle will not result in a large release of gas. In other circumstances, it may be desirable to select the charge pressure such that upon cooling to ambient room temperature the pressure within the bottle is sufficiently above normal atmospheric pressure as to aid in internally supporting the bottle under top loading that might occur in normal shipping of stacks of the filled bottles. A typical post-cooling interior pressure for such hot-filled beverages is between about 2 and 5 psi, but higher or lower pressures can be employed as desired. This ability to select the charging pressure has the advantage of permitting the use of a given filling and capping line on bottles having a wide variety of sizes, shapes and volumes.
Another feature of this apparatus is the ability to use the same capping equipment on a wide variety of plastic bottles. In some instances, the apparatus may need to be modified by a substitution of a suitably sized cap-holding chuck to accommodate different sized finishes. Usually, plastic bottles are molded with one of only a few selected standard finish sizes. The support ring associated with each of the various standard finish sizes is also quite uniform as is the outer surface of the finish above the support ring and below the cap-engaging features of the bottle. A small portion of the bottle immediately below the support ring, which is not altered in dimension by the blow-molding process, may also constitute a surface of known dimension. The most popular finish sizes in use today include 28 mm and 38 mm, but other standard finish sizes that can be used with this apparatus extend from 18 mm up to 132 mm. These standard finish sizes are used on a wide variety of bottles having different heights and volumes. Thus, capping equipment of a given finish size can be used on a wide variety of bottles, thus giving the bottler significant flexibility to adapt a specific filing and capping line to handle a wide range of bottles having a common finish size. Changing from one bottle size to another bottle size can be advantageously accomplished without any modification of a given apparatus of this type so long as the finish size remains unchanged, and the finish includes a corresponding standard sized support ring at a lower edge of the finish.
Another feature of the present apparatus is the ability to charge the head space of the bottle with a gas or vapor selected to be compatible with the liquid within the bottle. The gas or vapor can also be selected to resist any substantial transmission of the head space gas across the barrier presented by the plastic bottle itself. Both compressed air and nitrogen are desirable for minimizing this bottle barrier transmission of the head space gas subsequent to the application of the cap. Nitrogen has the additional desirable feature of low reactivity with most beverages that are likely to be bottled in this manner. For carbonated beverages, CO2 may be the gas of choice.
Other features of the present apparatus and the corresponding advantages of those features will become apparent from the following discussion of the preferred embodiments of the present bottle, exemplifying the best mode of practice, which is illustrated in the accompanying drawings. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the features. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
a-3d is a schematic illustration of the method employed by the present apparatus.
An apparatus 10 for pressurizing the headspace of a previously filled bottle 12 and applying any cap 14 to a finish portion 11 of the bottle is shown in
The apparatus 10 can also include a ring 24 that can be divided into at least two parts 24a and 24b, the parts being movable toward and away from a surface of known dimension on the bottle 12. Each of the parts of ring 24 can include a first surface 26 on an inner portion of the ring 24, shown in
Movement of the bottle 12 by a bottle transport mechanism, which can include a supply of a continuous series of such bottles 12, can include a mechanism 34 for transporting each bottle 12 vertically in relation to the ring 24. The vertical transport mechanism 34 can take the form of a pneumatic or hydraulic piston and cylinder mechanism, an electrically powered solenoid, one or more followers engaged on a track including a ramp or incline, or other suitable mechanism. The vertical transport mechanism 34 can be calibrated or controlled such that the position of the support ring 28, or other surface of known dimension on the bottle 12, is suitably positioned for the correct engagement by the various parts of ring 24 prior to a capping operation. Following the completion of a capping operation, the vertical transport mechanism 34 can return the bottle to a lowered pre-capped vertical position. It is to be understood that the vertical transport mechanism 34 can move the bottle 12 in relation to the ring 24, or can move the ring 24 and associated devices in relation to the bottle 12.
The apparatus 10 can also include a pressure chamber 36 shown in section in
The apparatus 10 can also include a chuck 48, shown in
The development of the pressure desired to pressurize the headspace of a previously filled bottle 12 can be achieved by coupling the pressure chamber 36 to an external source (not shown) of a gas or vapor selected to be compatible with the liquid within the bottle 12. The external source, which is expected to be typically maintained at about 10 to 40 psi, can be coupled to the pressure chamber 36 by a suitable conduit 60, which can include a valve 62 permitting the supply of the gas or vapor to, the pressure chamber 36 only when the pressure chamber 36 is engaged against the surface 42 of the sealing ring 24. The valve 62 can be controlled, for example, by a proximity switch 64 sensing the relative position between the pressure chamber 36 and sealing ring 24, or by other machine timing mechanisms. A pressure sensor 66 can also be coupled to the pressure chamber 36 and/or conduit 60, to sense any inadequate pressure development within the pressure chamber during a capping operation. The pressure sensor 66 can be coupled, for example, to suitable alarm or report generating apparatus to ensure that any systemic problems can be identified and quickly addressed.
The operation of the apparatus 10 can best be seen in connection with
While these features have been disclosed in connection with the illustrated preferred embodiment, other embodiments of the invention will be apparent to those skilled in the art that come within the spirit of the invention as defined in the following claims.
The present application is related to and claims all available benefit of U.S. Provisional Application 61/261,972 filed Nov. 17, 2009.
Number | Date | Country | |
---|---|---|---|
61261972 | Nov 2009 | US |