1. Field of the Invention
The invention relates to the field of flood/water damage remediation and to a system of providing pressurized drying air to a plurality of user selectable locations.
2. Description of the Related Art
Flooding or otherwise unwanted release or flow of water is a common and widespread cause of potentially expensive damages to property in many locations throughout the world. Flood damage can rise from natural sources such as overflowing rivers and lakes, rising rainwaters, rapid snow melt, mudslides, storm surges, wind-driven rain, tidal action, wave action, and the like. Water damage can also occur from malfunctions or breaks in manmade water delivery and/or storage systems. For example, broken levies or dams can release free flowing water. Broken water hoses or pipes within a building can also release significant quantities of water within the structure. Failure or breakage of water pipes can occur due to many causes including but not limited to pressure of frozen pipes, mechanical stress such as from earthquakes or wind loading, age and deterioration, and failures in joints or valves in the water system.
Flooding or other undesired release or accumulation of water within structures can be particular troublesome as the flooding or otherwise undesired water release can occur when a structure is unoccupied. In addition, a flooding event frequently indicates that the affected areas remain evacuated for some period of time. Thus the undesired exposure of the structure to water can occur for an extended period of time.
A further problematic aspect of flooding and water damage is that additional secondary damage resulting from the water exposure can occur, particularly if the water is not quickly removed and any residual moisture dissipated. For example, extended presence of flood water, mud, or other released water can facilitate growth of mold and/or mildew within a structure. Once established, mold and mildew are particularly difficult to exterminate. This can result in the requirement for removing and replacing materials within the structure, including potentially structural materials, to remove the mold and mildew growth. Such secondary impacts can add significantly to the cost of restoration/remediation above any direct damages caused by the water itself.
It will be appreciated that there is therefore a need to rapidly and thoroughly dry the interior of a structure that has been exposed to undesired release of water. The drying is also preferably carried out in a relatively inexpensive manner, particular as flood events frequently affect a large number of individual structures. It is also desired to rapidly and inexpensively dry the interior of structures, including regions or volumes that may be obscured from view and have limited access. For example, residual moisture remaining in the interior of enclosed wall structures, e.g., between opposed panels of drywall forming part of a structure wall, are not readily accessed by existing drying equipment, thereby making the drying of these enclosed volumes for mitigation of water exposure more problematic.
One embodiment includes a system for drying structures, the system comprising an enclosed housing comprising a plurality of outlet openings, a plurality of flexible outlet hoses each connected to a respective outlet opening, and a vacuum motor comprising an air inlet and engaged with the housing such that an outlet of the vacuum motor is exhausted into an interior of the housing so as to pressurize the interior of the housing such that compressed air is directed through the plurality of outlet hoses.
Another embodiment includes a method of drying an interior of a structure, the method comprising placing a pressurized drying system adjacent a region of a structure that is desirably dried, forming a plurality of openings in surfaces of the structure where the surfaces define enclosed spaces, inserting distal ends of outlet hoses of the pressurized drying system into respective openings of the surfaces of the structure, and engaging the pressurized drying system so as to generate a flow of pressurized air and to direct the pressurized air into the enclosed spaces.
Reference will now be made to the drawings wherein like reference numerals refer to like parts of processes throughout.
In one embodiment, the system 100 includes a generally sealed or enclosed housing 102. The housing 102 is preferably formed of a durable, strong, and relatively lightweight material and in some embodiments comprises molded plastic. The housing 102 is also preferably formed of materials and/or providing with coatings that are resistant to water damage as the system 100 can be expected to be used in locations where standing water and/or high relative humidities can be expected.
In some embodiments, the system 100 also comprises a vacuum motor assembly 104. The vacuum motor assembly 104 is configured to generate a relatively high speed and high flow rate of air and to direct this air into an interior 112 of the housing 102. The vacuum motor assembly 104 can comprise a multi-stage design, such as a dual stage or three stage design. In some embodiments, the vacuum motor assembly 104 can be constructed to discharge the air flow in a generally tangential manner. A tangential discharge aspect of the vacuum motor assembly 104 can cooperate with a generally spiral cross-sectional shape of the housing 102 to facilitate more efficient pressurization of air and outward direction of air flow from the system 100.
In some embodiments, the vacuum motor assembly 104 preferably generates an air flow in the range of approximately 50 to 150 cubic feet per minute (cfm). Such a range of flow rates will provide, in at least some preferred applications, a sufficient flow of air to effectively assist drying, while avoiding an excessive flow of air that might otherwise cause damage. In one nonlimiting preferred embodiment, the vacuum motor assembly 104 preferably provides a flow of approximately 95 cfm.
As previously described, a desired aspect of the system 100 is the ability to provide a relatively high flow rate of moderately pressurized air. Highly pressurized air, for example on the order of multiple tens of psig or more is undesired as such high pressures are less effective at speeding the drying process and can also result in damage from the high pressure air impinging on the structure or other materials, furnishings, personnel, and the like in the work area. An additional difficulty is that excessively pressurized air can result in difficulties in maintaining air flow at a desired location as excessively pressurized air can tend to dislodge or move a hose providing the air.
However, it is desired that the relatively high flow airstream be provided at a moderate degree of pressurization to speed the drying process, by for example to facilitate circulation of air in spaces that may be obstructed or occluded from the direct path of the system 100. In some preferred embodiments, a pressure in the interior 112 of the housing 102 of approximately 2 to 6 psig provides an appropriate moderate level of pressurization for the system 100. In these embodiments, a vacuum motor assembly 104 capable of generating approximately 100 to 150 inches of water vacuum provides an appropriate level of pressurization of the interior 112 of the housing 102. Such embodiments of vacuum motor assembly 104 can draw an operating power of approximately 1500 watts at a standard line voltage of 120 volts AC. Thus, the system 100 with the vacuum motor assembly 104 can operate on standard wall electrical service and does not require supplemental generators or nonstandard power sources.
The vacuum motor assembly 104 and system 100 include one or more air intakes 106. In some embodiments, the air intake 106 comprises an opening of the vacuum motor 104 that in other applications can be connected to one or more hoses or plenums to generate a depressed pressure area, for example for vacuuming/suctioning purposes. In the system 100, the air intake 106 provides a conduit for intake of air indicated by the designator I in
The system 100 also preferably comprises one or more outlet hoses 110. The outlet hoses 100 provide a path for outlet air (indicated by the designator O in
In some embodiments, the system 100 also provides a moderate amount of heating to the outlet air O. In some embodiments, the system 100 heats air approximately 30-50° F. above ambient. Thus, in some embodiments, the system 100 can draw in air at approximately 70° F. and provide pressurized air via the outlet hoses 100 of approximately 100-120° F.
In this embodiment, the system 100 comprises a power cord 120 that includes a connector for electrical connection to standard wall service so as to provide electrical power to the system 100. The system 100 also comprises one or more controls 122 to regulate the operation of the system 100. In some embodiments, the control 122 comprises a single pole on/off type switch. In some embodiments, the control 122 can regulate a speed of operation of a variable speed vacuum motor assembly 104. In some embodiments, the system 100 further comprises a carrying handle 124 configured to facilitate movement and repositioning of the system 100. The system 100 can also comprise a cord reel 126 configured to receive and store for convenient deployment the power cord 120.
In some embodiments, the vacuum motor assembly 104 can further comprise thermal protection 134. The thermal protection 134 automatically monitors one or more temperatures of the system 100, for example a temperature of the vacuum motor 130. If acceptable operating temperature thresholds are exceeded, the thermal protection 134 can automatically interrupt operation of the vacuum motor 130 to allow temperatures to return to acceptable levels. In some embodiments, the thermal protection 134 can also operate automatically to restore operation of the vacuum motor 130 when temperatures return to acceptable levels. In one non-limiting embodiment, the thermal protection 134 interrupts operation when internal temperatures exceed approximately 215° F. and restores operation when temperatures drop below approximately 180° F.
In one embodiment, the vacuum motor assembly 104 further comprises a mounting plate 140 comprising an opening 142 configured to align with and conform generally to the size and location of the air intake 106. In one embodiment, the mounting plate 140 comprises one or more mounting tabs 144 configured to engage with corresponding mounting points 146 of the housing 102. The mounting plate 140 can be attached to the housing 102, for example via fasteners, adhesives, welding, friction fit, detents, tabs, and the like. The mounting plate 140 can also be connected to the vacuum motor 130, for example via a plurality of fasteners 148.
In some embodiments, for example as illustrated in
As previously noted, a particular worksite where the system 100 is to be employed can have significantly different physical characteristics and drying needs than another. For example, a given job may require less than the full number of available openings 150 provided by the housing 102 and associated outlet hoses 110. In one embodiment described in greater detail below with respect to
The system 100 also comprises one or more fittings 154 which are also configured and sized to removably engage with a corresponding opening 150 in a generally airtight manner. A length of flexible hose 156 can be attached to the fitting 154 so as to comprise one of the outlet hoses 110.
In some embodiments, the combination of the plugs 152 and outlet hoses 110 provides great flexibility to a user in obtaining a desired number and characteristics of outlet airflows O from the system 100. For example, use of a larger number of plugs 152 with a corresponding smaller number of outlet hoses 110 will generally result in a greater air flow through a given individual outlet hose 110. Conversely, connection of a greater number of outlet hoses 110 with a corresponding lesser number of plugs 152 will generally result in a lower airflow O through a given individual outlet hose 110. In order to maintain a desired outlet flow O through the one or more outlet hoses 110, it will generally be preferred that during use each opening 150 have engaged therewith either a plug 152 or a fitting 154 with attached flexible hose 156, however this is not a requirement.
In some embodiments, it will be preferred that substantially all available openings 150 be provided with attached outlet hoses 110, for example comprising a fitting 154 and associated hose 156. For example, in some embodiments, plugging an excessive number of outlet hoses 110 and/or opening 150 can result in overpressurization of the housing 102. The plug-off assembly 160 (
In a block 204, the user places one or more of the pressurized drying systems 100 adjacent a structure or area to be dried. In a block 206, openings are formed as needed in surfaces of enclosed spaces. Conventional drying blowers that simply direct a stream of air in a selected direction, such as into a room of a building are less effective in drying the structure. There are frequently portions, such as the interiors of walls that are obstructed or occluded from the air flow generated by a simple air blower. In the block 206, the user drills, punches, or otherwise forms openings into the interiors of closed spaces to allow the system 100 to direct air flow therein. In one nonlimiting preferred embodiment, a user would drill or punch approximately half-inch holes where air flow from the system 100 is desired.
In a block 210, the user selects and/or cuts lengths of the flexible hose 156 to extend from a pressure unit of the system 100 to desired outlet locations that can include one or more of the openings formed in block 206. In one embodiment, the flexible hose 156 of the outlet hoses 110 comprises half-inch outside diameter flexible tubing and thus distal ends of the flexible hose 156 can engage with openings formed in block 206 via a friction fit.
As illustrated in
In a block 212, the user confirms that plugs 152 are fitted in any unused openings 150 and places the plugs 152 in the openings 150 as needed. Again, as previously noted it will generally be preferred that each opening 150 be fitted either with a plug 152 or a fitting 154 with attached flexible hose 156, however this is not a requirement.
In a block 214, the user engages a pressure unit, for example comprising the vacuum motor assembly 104 as engaged with the housing 102 to generate and provide a pressurized high flow airstream to desired outlet locations. The system 100 would then be allowed to operate for some period of time sufficient to circulate air around and within the structure sufficient to thoroughly dry and remove the undesired water. The length of time required will typically vary among different jobsites, however will be readily apparent to one of ordinary skill.
In some implementations it may be preferred to relocate one or more of the outlet hoses 110 or otherwise adjust the output characteristics and/or locations of the system 100. For example, different regions of a structure may dry at different rates and outlet hoses 110 can be removed from portions of the structure that have dried sufficiently. If a given outlet hose 110 is no longer required for a given job, the corresponding opening 150 can be sealed with a corresponding plug 152 such that the output of the pressurized drying system 100 is substantially directed solely through the outlet hoses 110 in use.
Block 220 corresponds generally to end of use of the pressurized drying system 100 at a given job, however it will be understood that additional steps in the restoration/remediation of water damage may be indicated. It will further be understood that the flow chart illustrated in
Although the above disclosed embodiments of the present teachings have shown, described and pointed out the fundamental novel features of the invention as applied to the above-disclosed embodiments, it should be understood that various omissions, substitutions, and changes in the form of the detail of the devices, systems and/or methods illustrated may be made by those skilled in the art without departing from the scope of the present teachings. Components, devices, and features and may be added, removed, or rearranged in different embodiments. Similarly processing steps be added, removed, or reordered in different embodiments. Accordingly, the scope of the invention should not be limited to the foregoing description but should be defined by the appended claims.
This application claims the priority benefits of U.S. Provisional Application 60/982,073 filed Oct. 23, 2007 and which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
532592 | Schubbert | Jan 1895 | A |
1016435 | Overholt | Feb 1912 | A |
1661553 | Louis Baar | Mar 1928 | A |
1703551 | Singer | Feb 1929 | A |
1749448 | Sculthorpe | Mar 1930 | A |
2122964 | Sweetland | Jul 1938 | A |
2308310 | Ruemelin, Jr. et al. | Jan 1943 | A |
2410353 | McCollum | Oct 1946 | A |
2427477 | Shapiro | Sep 1947 | A |
2535144 | Kovacs et al. | Dec 1950 | A |
2592578 | Kogl | Apr 1952 | A |
2664809 | Morell | Jan 1954 | A |
2764929 | Tegarty | Oct 1956 | A |
2779065 | Rehme | Jan 1957 | A |
2782464 | Joppich | Feb 1957 | A |
2940777 | Lundberg | Jun 1960 | A |
2969027 | Figge | Jan 1961 | A |
3001332 | Wilder | Sep 1961 | A |
3007256 | Rouy | Nov 1961 | A |
3052987 | Mercer | Sep 1962 | A |
3057285 | Wheeler | Oct 1962 | A |
3115567 | Meltzer | Dec 1963 | A |
3233627 | Cebula | Feb 1966 | A |
3324846 | Smith | Jun 1967 | A |
3487557 | Linstead | Jan 1970 | A |
3659077 | Olson | Apr 1972 | A |
3729614 | Martinet | Apr 1973 | A |
3796551 | Pope | Mar 1974 | A |
3805405 | Ambos | Apr 1974 | A |
3994525 | Breitschwerdt et al. | Nov 1976 | A |
4000620 | Burge | Jan 1977 | A |
4183292 | Banks | Jan 1980 | A |
4251032 | Werding | Feb 1981 | A |
4391619 | Shono et al. | Jul 1983 | A |
4571849 | Gardner et al. | Feb 1986 | A |
4732562 | Palsson | Mar 1988 | A |
5069114 | Sodec et al. | Dec 1991 | A |
5145216 | Valls, Jr. | Sep 1992 | A |
5155924 | Smith | Oct 1992 | A |
5165604 | Copp, Jr. | Nov 1992 | A |
5174048 | Shero | Dec 1992 | A |
5214860 | Landes | Jun 1993 | A |
5408759 | Bass | Apr 1995 | A |
5419059 | Guasch | May 1995 | A |
5456023 | Farnan | Oct 1995 | A |
5555643 | Guasch | Sep 1996 | A |
5590478 | Furness | Jan 1997 | A |
5599229 | Claunch et al. | Feb 1997 | A |
5611151 | Jacob | Mar 1997 | A |
5709412 | Vadas | Jan 1998 | A |
5727330 | Cucchi et al. | Mar 1998 | A |
5761827 | Guasch | Jun 1998 | A |
5813139 | Lillicotch | Sep 1998 | A |
5893216 | Smith et al. | Apr 1999 | A |
D412381 | Peet | Jul 1999 | S |
5926972 | Di Peso | Jul 1999 | A |
5960556 | Jansen | Oct 1999 | A |
5991966 | Sproule | Nov 1999 | A |
6116749 | Quiogue et al. | Sep 2000 | A |
6125538 | Vadas | Oct 2000 | A |
6215955 | Sloan | Apr 2001 | B1 |
6216359 | Peet | Apr 2001 | B1 |
6367945 | Quiogue et al. | Apr 2002 | B2 |
6647639 | Storrer | Nov 2003 | B1 |
6662467 | Cressy et al. | Dec 2003 | B2 |
6691427 | Fernandes et al. | Feb 2004 | B1 |
6705939 | Roff | Mar 2004 | B2 |
6739070 | Jacobs et al. | May 2004 | B1 |
6740810 | Regueiro | May 2004 | B1 |
6871880 | Olson | Mar 2005 | B1 |
6886271 | Storrer | May 2005 | B2 |
7036209 | Wago et al. | May 2006 | B1 |
7047664 | Martinez | May 2006 | B1 |
7059638 | Charrette et al. | Jun 2006 | B2 |
7137308 | Harris | Nov 2006 | B2 |
7183524 | Naylor et al. | Feb 2007 | B2 |
7230213 | Naylor | Jun 2007 | B2 |
7243442 | Myerholtz et al. | Jul 2007 | B2 |
7695007 | Cord | Apr 2010 | B2 |
7716849 | Hicks | May 2010 | B1 |
7785064 | Bartholmey et al. | Aug 2010 | B2 |
7841087 | Walker, Jr. | Nov 2010 | B1 |
7880121 | Naylor | Feb 2011 | B2 |
20050252380 | Gastaldi et al. | Nov 2005 | A1 |
20060000110 | Aisenberg et al. | Jan 2006 | A1 |
20060049615 | Day | Mar 2006 | A1 |
20060143936 | Studebaker | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
3430893 | May 1985 | DE |
3418326 | Nov 1985 | DE |
4110765 | Oct 1992 | DE |
4206190 | May 1993 | DE |
85757 | Aug 1983 | EP |
59059235 | Apr 1984 | JP |
59120068 | Jul 1984 | JP |
60005258 | Jan 1985 | JP |
60030957 | Feb 1985 | JP |
63271045 | Nov 1988 | JP |
01100498 | Apr 1989 | JP |
01227800 | Sep 1989 | JP |
02024536 | Jan 1990 | JP |
02056291 | Feb 1990 | JP |
02193685 | Jul 1990 | JP |
03028462 | Feb 1991 | JP |
WO 9825507 | Jun 1998 | WO |
WO 9911116 | Mar 1999 | WO |
WO 2004048870 | Jun 2004 | WO |
WO 2006062383 | Jun 2006 | WO |
WO 2007002700 | Jan 2007 | WO |
Entry |
---|
U.S. Appl. No. 12/035,902, filed Feb. 22, 2008, Mark S. Walker. |
U.S. Appl. No. 12/035,902, filed Feb. 22, 2008, Mark S. Walker, Restriction Requirement dated May 3, 2010 and Response, Notice of Allowability dated Aug. 20, 2010. |
U.S. Appl. No. 12/860,474, filed Aug. 20, 2010, Mark S. Walker. |
Number | Date | Country | |
---|---|---|---|
60982073 | Oct 2007 | US |