Information
-
Patent Grant
-
6276567
-
Patent Number
6,276,567
-
Date Filed
Monday, March 29, 199925 years ago
-
Date Issued
Tuesday, August 21, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Foley, Hoag & Eliot, LLP
- Webb; M. Sharon
-
CPC
-
US Classifications
Field of Search
US
- 222 81
- 222 82
- 222 88
- 222 95
- 222 105
- 222 107
- 222 325
- 222 389
- 128 DIG 12
- 128 DIG 13
- 604 131
- 604 132
- 141 114
- 141 329
- 141 330
-
International Classifications
-
Abstract
A fluid delivery apparatus is provided that includes a pressure tube and a first cap assembly having a control system, with the first cap assembly coupled to a first end of the pressure tube for forming a gas-tight seal thereat. The apparatus also includes a second cap assembly coupled to a second end of the pressure tube for forming a gas-tight seal thereat, with the second cap assembly supporting a fluid container that is housed in the interior space of the pressure tube.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to fluid delivery apparatus, and in particular, to a fluid delivery system in which direct and uniform pressure can be applied onto the surface of a flexible container, to cause the fluid contained inside the flexible container to be delivered therefrom.
2. Description of the Prior Art
Effective and reliable fluid delivery is important in many applications, but is especially important in the medical field. Fluid delivery is often a critical and essential part of many medical procedures and in the care of patients. The most basic application is in the delivery of fluids, such as saline, blood or other medicine, that are stored in a flexible bag. Such fluids are often delivered intravenously to a patient during medical procedures, or during recovery or other treatments.
There currently exists several fluid delivery systems that are used to deliver fluids to a patient. One such system utilizes a pump to deliver the fluids from a fluid bag. However, fluid pumps can be expensive and subject to mechanical or other failure.
Other systems utilize bladders which are inflated or otherwise pressurized to expand and thereby impinge (i.e., apply pressure) on a fluid bag, causing fluid from the fluid bag to be expelled therefrom. However, such systems suffer from the drawback that the pressure applied to the fluid bag is not uniform and consistent, so that folds in the material of the fluid bag can develop as fluid is being expelled. This results in inconsistent flow of fluid from the fluid bag.
Thus, there still remains a need for a fluid delivery system in which pressure is provided in an effective and reliable manner.
SUMMARY OF THE DISCLOSURE
It is an object of the present invention to provide a fluid delivery apparatus in which pressure is provided in an effective and reliable manner.
It is another object of the present invention to provide a fluid delivery apparatus in which pressure is provided in a direct and uniform manner.
It is yet another object of the present invention to provide a fluid delivery apparatus which is simple to use, and which reduces the costs of the apparatus.
In order to accomplish the objects of the present invention, the present invention provides a fluid delivery apparatus that includes a pressure tube, and a first cap assembly having a control system, with first cap assembly coupled to a first end of the pressure tube for forming a gas-tight seal thereat. The apparatus also includes a second cap assembly coupled to a second end of the pressure tube for forming a gas-tight seal thereat, with the second cap assembly supporting a fluid container that is housed in the interior space of the pressure tube.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a front perspective view of a fluid delivery apparatus according to a first embodiment of the present invention.
FIG. 2
is a rear perspective view of a fluid delivery apparatus of FIG.
1
.
FIG. 3
is an exploded front perspective view of a fluid delivery apparatus of FIG.
1
.
FIG. 4
is a perspective view of an embodiment of the bottom cap assembly for the fluid delivery apparatus of
FIGS. 1 and 3
.
FIG. 5
is a perspective view of another embodiment of the bottom cap assembly for the fluid delivery apparatus of FIG.
1
.
FIG. 6
is a perspective view of a hanger assembly that can be used with the bottom cap assembly of FIG.
4
.
FIG. 7
is a perspective view of another hanger assembly that can be used with the bottom cap assembly of FIG.
4
.
FIG. 8
is a perspective view of yet another hanger assembly that can be used with the bottom cap assembly of FIG.
4
.
FIG. 9
is a perspective view of the hanger and bottom cap assemblies of
FIG. 7
shown in use with a fluid container suspended therefrom.
FIG. 10
is a cross-sectional view of the control system of the fluid delivery apparatus of FIG.
1
.
FIG. 11
is a cross-sectional view of a portion of the fluid delivery apparatus of
FIG. 1
illustrating its operation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following detailed description is of the best presently contemplated modes of carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention. The scope of the invention is best defined by the appended claims. In certain instances, detailed descriptions of well-known devices, compositions, components, mechanisms and methods are omitted so as to not obscure the description of the present invention with unnecessary detail.
The present invention provides a fluid delivery apparatus
20
that utilizes pressure to cause fluid from a fluid container to be delivered therefrom. The fluid delivery apparatus applies direct and uniform pressure onto most of the entire surrounding surface area of the outer surface of the fluid container, thereby promoting the application of uniform pressure onto the fluid container to ensure the effective and reliable delivery of fluid.
FIGS. 1-3
illustrate a fluid delivery apparatus
20
according to one embodiment of the present invention. In this embodiment, the apparatus
20
is a system that includes three basic assemblies or components: a control system
22
that is embodied in a top cap assembly
30
, a pressure tube
24
, and a bottom cap assembly
26
. The control system
22
can be embodied in a top cap assembly
30
that is illustrated in greater detail in FIG.
10
. The top cap assembly
30
forms a seal for one (i.e., top) end of the pressure tube
24
.
The pressure tube
24
is generally cylindrical, and defines an inner chamber
31
(see
FIG. 11
) that functions to house or retain a fluid container
32
(which is described in greater detail below), and to promote the application of pressure onto the fluid container
32
such that the pressure is applied over 360 degrees around the circumference of the fluid container
32
, and along at least 75 percent of the length of the fluid container
32
. The pressure tube
24
is preferably made from a material that is capable of withstanding at least 20 percent more gas exerted load than the fluid container
32
without experiencing volumetric distortion. The greater load bearing capacity of the pressure tube
24
ensures that the gas pressure created inside the pressure tube
24
is effectively transferred to the outer surface of the fluid container
32
. In addition, the stable volumetric design of the pressure tube
24
also ensures that proper and stable pressure is exerted onto the fluid container
24
during use.
The bottom cap assembly
26
functions to form a seal for the other (i.e., bottom) end of the pressure tube
24
, and includes a mechanism for puncturing the fluid container
32
to couple the fluid contained in the fluid container
32
with a fluid transfer line
34
. The fluid transfer line
34
can be an IV line that is inserted inside the body of a patient to deliver the fluid from the fluid container
32
to the patient.
Referring to
FIG. 3
, the bottom cap assembly
26
can also include a hanger assembly
80
that functions to hold and support the fluid container
24
in a manner that promotes the uniform application of pressure onto most of the entire surrounding surface area of the outer surface of the fluid container
32
. The hanger assembly
80
, and alternatives thereof, will be described in connection with
FIGS. 6-8
below. As shown in
FIG. 3
, the top cap assembly
30
of the control system
22
can be coupled to the top
38
of the pressure tube
24
to form a gas seal, and the bottom cap assembly
26
can be removably coupled to the bottom
40
of the pressure tube
24
to form another gas seal.
The bottom cap assembly
26
will now be described in connection with FIG.
4
. The bottom cap assembly
26
has a bottom wall
46
and a circumferential wall
48
extending therefrom to form a dish-like configuration. Threads
50
can be provided on the internal surface of wall
48
for engaging the bottom
40
of the pressure tube
24
, and a gasket
52
can be provided at the base of the wall
48
against the bottom wall
46
. The gasket
52
is used to form the gas-tight seal for the bottom
40
of the pressure tube
24
. A plurality of legs
54
can be provided in spaced-apart manner about the circumference of the bottom wall
46
to raise the bottom cap assembly
26
(and therefore, the apparatus
20
) above a supporting table top or other surface, so that there is room under the bottom wall
46
for the fluid line
34
to pass from the bottom wall
46
to the patient. The bottom wall
46
can further include a domed section
56
at about the center thereof, with a spike
58
provided at and extending vertically upwardly from the domed section
56
. The spike
58
may be embodied in the form of a thin generally cylindrical tube having an angled top end
60
that defines a sharp tip that can be used to pierce the spike port of the fluid container
32
. A guide tube
70
extends from the bottom wall
46
, and can be used to guide and receive a support pole
72
, such as that shown in FIG.
7
.
As described above, the bottom cap assembly
26
has internal threads
50
that can be threaded to external threads
62
provided on the outer surface of the pressure tube
24
to secure the bottom cap assembly
26
to the bottom
40
of the pressure tube
24
. However, to assist in this engagement, and to thereby increase the safety and reliability of the apparatus
20
, two or more spaced-apart clips
64
can be provided. Each clip
64
extends vertically upwardly from the wall
48
and has a flange
66
that extends radially inwardly and which is adapted to clip onto corresponding notches (not shown) provided on the outer surface of the pressure tube
24
(see FIG.
3
). In use, when the bottom cap assembly
26
is initially inserted into the bottom
40
of the pressure tube
24
, the flanges
66
clip into the notches to temporarily grip or hold the pressure tube
24
while the user tightens the threaded connection between threads
50
and
62
. Once the user turns bottom cap assembly
26
to engage the threads
50
and
62
, the flanges
66
come out of the notches and the threaded connections take over the responsibility of gripping the pressure tube
24
. The gas-tight seal is created by the gasket
52
after the threaded engagement has been completed.
FIG. 5
illustrates another possible embodiment of a bottom cap assembly
26
a.
Assembly
26
a
is essentially the same as assembly
26
, so the same elements are designated by the same numerals except that an “a” has been added in FIG.
5
. Assembly
26
a
differs from assembly
26
in that the spike
58
a
is deflected at its top end
60
a.
The deflected top end
60
a
can be helpful in mounting the fluid container
32
onto the spike
58
a.
For example, where the fluid container
32
is a conventional sterile fluid bag, these sterile fluid bags are provided with a standardized spike port through which the spike
58
a
is to be inserted. A deflected top end
60
a
assists in the mounting procedure because it provides direct access to the spike port.
A hanger assembly can be coupled to the bottom cap assembly
26
to support a fluid container
32
. The hanger assemblies described herein are provided in an integrated manner with the spike
58
(via the bottom cap assembly
26
), which makes it easier and more convenient to install the fluid container
32
inside the pressure tube
24
for use.
One example of a hanger assembly
80
is shown in FIG.
6
. The hanger assembly
80
has a U-shaped support arch
82
that acts as a frame. The two legs
84
,
86
of the support arch
82
can be mounted to the bottom wall
46
of the bottom cap assembly
26
. A hanging loop
88
can be provided at the top of the support arch
82
for hanging the support arch
82
(and the bottom cap assembly
26
) to a hook (not shown) provided inside the pressure tube
24
or from the top cap assembly
30
(e.g., from wall
140
described below). A hook
90
can be provided at the top of the support arch
82
for hanging the fluid container
32
.
Another example of a hanger assembly
96
is shown in FIG.
7
. The hanger assembly
96
has a support pole
98
having a bottom end that is received inside the guide tube
70
of the bottom cap assembly
26
a.
A cantilevered arm
100
is provided at the top end of the support pole
98
. As with support arch
82
, a hanging loop
102
and another loop
104
can be provided on the cantilevered arm
100
.
Yet another example of a hanger assembly
108
is shown in FIG.
8
. The hanger assembly
108
has an arcuate support wall
110
having a bottom end that is mounted to the bottom wall
46
of the bottom cap assembly
26
. A cantilevered arm
112
is provided at the top end of the support wall
110
. As with support arch
82
, a hanging loop
114
and another loop
116
can be provided on the cantilevered arm
112
. The arcuate nature of the support wall
110
allows the flexible fluid container
32
to be rested on the wall
110
when the apparatus
20
is laid flat on its side on a table or other surface. To facilitate this, the wall
110
should be positioned on the bottom wall
46
of the bottom cap assembly
26
at a slight angle to the fluid port
148
(see
FIG. 2
) in the control system
22
so that the fluid will flow towards the port
148
when the entire apparatus
20
is laid flat on its side.
FIG. 9
illustrates the bottom cap assembly
26
a
and hanger assembly
96
in use, holding a fluid container
32
. The fluid container
32
can be any flexible or compliant fluid container, including standard sterile fluid or IV bags made by Baxter Healthcare Corp. of Illinois, Abbott Laboratories of Illinois, and B. Braun of Germany, among others. In
FIG. 9
, the fluid container
32
is embodied in the form of a sterile fluid bag, such as an IV bag or a blood bag. As shown in
FIG. 9
, the fluid container
32
has a bar
120
provided at its top end which can be suspended from the hook
104
. In addition, the spike
58
a
has been inserted through the spike port adjacent the bottom end of the fluid container
32
.
The top cap assembly
30
and control system
22
will be described with reference to
FIGS. 1
,
2
and
10
. The top cap assembly
30
has a lower housing
130
and an upper housing
132
. The lower housing
130
defines a cylindrical bore
134
having internal threads
136
that are adapted to engage external threads provided on the outer surface of the pressure tube
24
. A gasket
138
is also provided at the top of the bore
134
adjacent the wall
140
that divides the lower and upper housings
130
,
132
.
Inside the upper housing
132
is provided an air pressure regulator
142
that is supported on the wall
140
. The air pressure regulator
142
operates to maintain constant pressure in the apparatus
20
. An air regulator knob
144
is coupled to the top of the air pressure regulator
142
, and allows the user to adjust the incoming air down to the required pressure rating used for the apparatus
20
. An air line
146
extends through a first port
148
(see
FIG. 2
) in the upper housing
132
, and passes through air pressure regulator
142
and a second port
150
in the wall
140
. Thus, the air line
146
communicates between a source
152
and the interior of the pressure tube
24
(i.e., of which the bore
134
becomes a part after the lower housing
130
is threadably engaged with the top
38
of the pressure tube
24
). The source
152
can be a container that is used to contain air, and in the present invention, “air” can be defined to include ambient air and specific gases, such as but not limited to argon, carbon dioxide, and nitrogen. In addition, the upper housing
132
can include an air relief valve
158
that is coupled to a lever arm
160
. The relief valve
158
operates to release pressure in the event the pressure in the apparatus
20
exceeds a pre-determined safety limit (i.e., “over-pressure situation”). Even though the air pressure regulator
142
is expected to maintain constant pressure, the relief valve
158
provides additional safety in the event the air pressure regulator
142
fails or malfunctions. A pressure gauge
162
can be mounted to the air pressure regulator
142
at a mount hole
164
.
The set-up, use and operation of the apparatus
20
will now be described with reference to
FIGS. 1-3
and
10
-
11
. First, the upper cap assembly
30
can be provided integral with the pressure tube
24
, or can be provided separately, and then secured together by threaded engagement in the manner described above. Thereafter, the user takes the fluid container
32
, hangs it on the appropriate hanger assembly, and then causes the spike
58
or
58
a
to pierce the spike port on the fluid container
32
. The user then takes the bottom cap assembly
26
and its hanger assembly and inserts the hanger assembly and fluid container
32
into the chamber
31
of the pressure tube
24
via the opening in the bottom
40
thereof. The clips
64
initially latch on to the notches
68
, but this is disengaged when the user turns the bottom cap assembly
26
to cause the threads
50
,
62
to engage. After the top and bottom cap assemblies
30
,
26
have been secured in place, a gas-tight seal is created inside the pressure tube
24
, and the apparatus is ready for use.
To begin use, the user turns the air regulator knob
144
, which introduces air from the source
152
into the apparatus
20
. Turning the knob
144
also allows the user to adjust the pressure in apparatus
20
to the desired pressure rating. This adjustment can be viewed at the gauge
162
, which displays the pressure. The air from the source
152
enters the pressure tube
24
via the air line
146
. Referring now to
FIG. 11
, the air that enters the chamber
31
exerts gas pressure on to the wall of the flexible fluid container
32
to cause fluid to be discharged from inside the fluid container
32
. Since the fluid container
32
is supported by a hanger assembly to be positioned at the center of the chamber
31
, uniform gas pressure can be applied (see arrows
170
) to a large portion of the surface area of the fluid container
32
, thereby ensuring that the fluid contained therein is discharged at a consistent flow rate. The fluid is discharged via the spike
58
or
58
a
to the fluid line
34
for delivery to the patient or other intended recipient.
In the event of an over-pressure situation, the air relief valve
158
will open automatically to vent to the atmosphere. Such relief valves and their operations are well-known in the art, and such will not be described in greater detail herein.
When the fluid inside the fluid container
32
has been depleted and it is desired to replace the fluid container
32
, the user can turn the air regulator adjustment knob
144
down to zero pressure, and then manually release the gas (i.e., pressure) from apparatus
20
by pressing on the lever
160
. As shown in
FIG. 10
, the lever is rotatably coupled to the relief valve
158
by a pin
172
, so that when the lever
160
is pressed vertically downward, the relief valve
158
is raised to vent the chamber
31
via a vent port
174
provided in the wall
140
. The supply of air from the source
152
can be turned off either by the air regulator adjustment knob
144
, an on/off switch (not shown, but can be provided), or at the base of the air line
146
. The bottom cap assembly
26
can then be unscrewed from the bottom
40
of the pressure tube
24
, and the fluid container
32
disposed of. In one embodiment, the entire bottom cap assembly
26
and hanger assembly is disposed as well, and a new bottom cap assembly
26
and hanger assembly is introduced together with a new fluid container
32
in the manner described above. In another embodiment, the existing bottom cap assembly
26
and hanger assembly can be re-used by hanging a new fluid container
32
on to the hanger assembly, and securing the existing bottom cap assembly
26
and hanger assembly (with the new fluid container
32
) to the bottom
40
of the pressure tube
24
in the manner described above.
While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.
Claims
- 1. A fluid delivery apparatus, comprising:a pressure tube having an interior space, a first end and a second end; a first cap assembly having a control system, the first cap assembly coupled to the first end of the pressure tube for forming a gas-tight seal thereat; and an assembly removably affixable to the pressure tube, said assembly dimensionally adapted for supporting a fluid container and for delivering said fluid container into the interior space of the pressure tube, and said assembly further comprising a second cap assembly dimensionally adapted for coupling with the second end of the pressure tube and for forming a gas-tight seal thereat.
- 2. The apparatus of claim 1, further including a fluid delivery line, wherein the fluid container has an interior that stores fluid, and wherein the second cap assembly further includes a spike for coupling the interior of the fluid container with the fluid delivery line.
- 3. The apparatus of claim 1, further comprisinga hanger assembly mounted on the second cap assembly for insertion within the interior space of the pressure tube, the hanger assembly providing support to the fluid container and further promoting uniform application of pressure to the fluid container, and a puncturing mechanism positioned on the second cap assembly for penetrating the fluid container.
- 4. The apparatus of claim 3, wherein the puncturing mechanism comprises a spike.
- 5. A system for delivering fluid into a fluid line, comprising:a pressure tube having an inner chamber, a first end and a second end, said pressure tube being adapted for applying a preselected amount of pressure to a fluid container; a top cap assembly affixable to said first end to form a first gas-tight seal therewith; and an assembly removably affixable to the pressure tube and insertable into the inner chamber of the pressure tube, comprising a bottom cap, a hangar assembly mounted on the bottom cap and a puncture mechanism integral with the bottom cap that penetrates the fluid container to establish fluid communication therewith, wherein, when said assembly is separated from the pressure tube, the fluid container may be secured between the hanger assembly and the bottom cap in a preselected position, and wherein, when the fluid container has been secured within the assembly, said assembly may be inserted into the inner chamber of the pressure tube and sealingly affixed therein by maneuvering the bottom cap to form a second gas-tight seal with said pressure tube, and wherein, when said assembly has been sealingly affixed within the pressure tube, the preselected amount of pressure may be applied to the fluid container to discharge fluid through the puncture mechanism into the fluid line.
- 6. The system of claim 5, further comprising a control system that regulates the pressure applied to the fluid container within the pressure tube.
- 7. The system of claim 6, wherein the control system comprises an inlet port in fluid communication with a source of pressurized air, an air regulator knob that controls inflow of the pressurized air through the inlet port, a pressure regulator that maintains the preselected amount of pressure within the pressure tube, and a relief valve that vents the pressurized air from within the pressure tube to decrease the pressure therein.
- 8. The system of claim 5, wherein the top cap assembly bears a first set of threads that matingly seal with a second set of threads on the pressure tube to form the first gas-tight seal.
- 9. The system of claim 8, further comprising a gasket.
- 10. The system of claim 5, wherein the bottom cap bears a third set of threads that matingly seal with a fourth set of threads on the pressure tube to form the second gas-tight seal.
- 11. The system of claim 10, wherein the bottom cap is clamped onto the pressure tube to temporarily affix it before engaging the third set of threads with the fourth set of threads to form the second gas-tight seal.
- 12. The system of claim 10, further comprising a gasket.
- 13. The system of claim 5, wherein the puncture mechanism establishes fluid communication with the fluid container before the assembly is inserted into the pressure tube.
- 14. The system of claim 5, wherein the puncture mechanism establishes fluid communication with the fluid container after the assembly is inserted into the inner chamber of the pressure tube.
- 15. The system of claim 5, wherein the puncture mechanism comprises a spike.
- 16. The system of claim 5, wherein the hangar assembly comprises a support having a proximal end adjacent then bottom cap and a distal end, wherein a top end of the fluid container is attached to the distal end of the support, and wherein a bottom end of the fluid container is positioned in proximity to the puncture mechanism.
- 17. The system of claim 16, wherein the support is dimensionally adapted for extending the fluid container to its full length and for holding the fluid container in an extended position with the bottom end of said fluid container in proximity to the puncture mechanism.
- 18. The system of claim 17, wherein the puncture mechanism penetrates the bottom end of the fluid container when the fluid container is held in the extended position by the support.
- 19. The system of claim 17, wherein the support further comprises a hook affixed to the distal end of the support dimensionally adapted for securing the top end of the fluid container.
- 20. The system of claim 17, wherein the support comprises an arcuate axially aligned supporting wall having a base that is mounted on the bottom cap.
- 21. The system of claim 5, wherein the assembly is disposable.
- 22. A method of delivering a therapeutic fluid from a fluid container into a fluid transfer line, comprising:providing an assembly comprising a hanger assembly that supports the fluid container, a base upon which the hanger assembly is mounted and a spike integrated with the base, said spike being adapted for insertion into the fluid container to establish fluid communication between the fluid container and the fluid transfer line; providing a pressure tube comprising an inner chamber, a top end and a bottom end; loading the fluid container bearing the therapeutic fluid onto the assembly; inserting the assembly into the pressure tube; securing the assembly within the inner chamber of the pressure tube; providing a gas-tight seal to the pressure tube around the assembly; establishing fluid communication between the fluid container and the fluid transfer line; introducing a regulated amount of pressurized air into the pressure tube to compress the fluid container; and expressing a preselected amount of therapeutic fluid into the fluid transfer line.
- 23. The method of claim 22, further comprising releasing the pressurized air from the pressure tube when the preselected amount of therapeutic fluid has been expressed from the fluid container.
- 24. The method of claim 23, further comprising releasing the gas-tight seal.
- 25. The method of claim 24, further comprising removing the assembly from the chamber of the pressure tube.
- 26. The method of claim 22, wherein the step of loading the fluid container onto the assembly further comprises positioning a spike port on the fluid container in proximity to the spike.
- 27. The method of claim 26, wherein the step of loading the fluid container onto the assembly further comprises inserting the spike into the fluid container.
- 28. The method of claim 26, wherein the step of securing the assembly within the inner chamber of the pressure tube further comprises inserting the spike into the fluid container.
- 29. The method of claim 26, wherein the step of providing a gas-tight seal to the pressure tube around the assembly further comprises inserting the spike into the fluid chamber.
- 30. The method of claim 22, wherein the assembly is disposable.
- 31. The method of claim 22, wherein the therapeutic fluid is a crystalloid.
- 32. The method of claim 22, wherein the therapeutic fluid is a colloid.
- 33. The method of claim 22, wherein the therapeutic fluid comprises a blood component.
- 34. The method of claim 33, wherein the blood component comprises blood cells.
- 35. The method of claim 33, wherein the blood component comprises blood plasma.
- 36. An apparatus for delivering fluid from a fluid container into an intravenous line, comprising:a cartridge dimensionally adapted for insertion into a pressurizable cylinder, said cartridge having means for affixing the fluid container thereto and means for establishing fluid communication between the fluid container and the intravenous line, and said pressurizable cylinder having means for regulating inflow and outflow of pressurized air to provide within the pressurized cylinder a set of preselected air pressures; and a means for securing the cartridge within the pressurizable cylinder wherein the set of preselected pressures established within the pressurizable cylinder may be exerted upon said cartridge to express fluid from the fluid container into the intravenous line.
- 37. The apparatus of claim 36, wherein the cartridge is disposable.
US Referenced Citations (41)
Foreign Referenced Citations (1)
Number |
Date |
Country |
10314303 |
Dec 1998 |
JP |