The present disclosure concerns a pressurized gas container, for example one containing carbon dioxide for use in a device or system for the preparation of a carbonated drink. The present disclosure also provides a plug that may be functionally integrated into the container and further provides a packaging with a plurality of such containers.
References considered to be relevant as background to the presently disclosed subject matter are listed below:
Acknowledgement of the above references herein is not to be inferred as meaning that these are in any way relevant to the patentability of the presently disclosed subject matter.
Pressurized gas containers are typically used in systems or appliances that require in-feed of pressurized gas. An appliance for the preparation of a carbonated beverage is one such example. Most pressurized gas containers are designed for multiple use, i.e. the container's volume and/or gas pressure are sufficient for several gas-feed doses. This typically requires the container to be associated with a mechanism allowing connecting and disconnecting gas flow between the container and the appliance or system. Often, the container itself is equipped with a gas-flow control mechanism, such as a valve or a re-sealable membrane, to permit a user to disconnect the container from the appliance or the system while preventing gas leakage from the container.
In addition, the containers are often designed for multiple use cycles, i.e., once the container is emptied, it is often shipped back to the provider for cleaning and re-filling. Such a container is typically designed to meet strict safety requirements, such as relatively thick wall thickness and robust re-sealable opening in order to minimize accidental rupturing of either the seal or the container. This, however, results in high production costs and complex logistics. Moreover, many such containers are not returned after utilization to the supplier for re-filling, resulting in relatively high sunk-costs.
There is therefore a need for disposable pressurized gas containers which are intended for a single use in an appliance or a system, such as an appliance for the preparation of a carbonated drink.
Provided by an aspect of this disclosure is a new pressurized gas container, in particular but not limited to a pressurized carbon dioxide canister for use in appliances or systems for the preparation of carbonated drinks The new container is intended for single use, meaning that it may be used until its content of pressurized gas is exhausted and then discarded, e.g. disposable after use. For example, a carbon dioxide canister of this disclosure is coupled to a system or appliance and may be used for preparing multiple carbonated drink portions and then decoupled from the appliance or system and discarded. Accordingly, the container has a plug at its opening (the opening typically formed at end of a neck portion of the container) that is configured for (i) sealing the opening until use of the container, (ii) irreversibly opening, piercing or rupturing upon coupling of the opening with a coupling element (also referred to herein, occasionally, as “adapter”), which may be an integral element of the appliance or system or may be or a coupling device (an adapter) for coupling to the container's opening on the one hand and to the appliance or system on the other hand to thereby establish gas communication between the container and said appliance or system, and (iii) thereafter permitting the release of the pressurized gas from the container into a gas port of said appliance or system. The container's body may be formed with walls having an average thickness that is less than that of containers intended for repeated use, where the walls need to meet higher safety standards to withstand the many repeated cycles of filling the container with pressurized gas and subsequent emptying.
The mode of use of prior art pressurized gas containers that involves multiple filling and emptying cycles (“multiple use container”) mandates high safety standards, which include, among them, robust construction standards manifested, among others, in certain wall thickness requirements. In the case of a container of the kind provided by this disclosure, the container body may have walls with an average thickness that can be 60%, 55%, 50%, 45%, 40% or at times even less of the average thickness of the walls of a container body of a multiple use container. This may lead to a considerable saving in weight and costs.
Other aspects of this disclosure include:
a plug device that may be integrated with a container blank to form the pressurized gas container of this disclosure;
a container blank that may be integrated with said plug device to form the pressurized gas container of this disclosure;
a method for the preparation of such container, comprising filling the blank with pressurized gas and then sealing the opening of the container with the plug device;
an apparatus for such manufacture for carrying out said method;
an adapter for coupling a pressurized gas container to an appliance or system;
multipack of pressurized gas containers, which may also comprise such an adapter; and
an appliance or system for utilizing the pressurized gas containers of the invention, e.g. an appliance or system for preparing carbonated drink.
Thus, provided by an aspect of this disclosure is a pressurized gas container or canister (jointly referred to herein as “container”) in particular (but not exclusively), one containing pressurized carbon dioxide. The pressurized gas container of this disclosure may be configured for use in an appliance or system adapted for the preparation and optionally dispensing of carbonated drinks The container is, typically, one that is intended for association with a carbonated drink dispensing appliance or system in which the pressurized carbon dioxide is utilized for the preparation of the carbonated drink Thus, the pressurized gas container is intended for association with and supplying gas to a pressurized gas port of an appliance or system. Another example of container that may be employ the principles of the current disclosure is a container filled with pressurized air, oxygen or other breathing mixture for use by firemen, by high-altitude mountain climbers, as a bailout breathing canister for scuba divers; etc. The container comprises a container body, defining a pressurized gas enclosure, and a neck integral therewith that defines a gas outlet and is configured for coupling with a coupling element. The coupling element may be a coupling element integral with or forming part of said gas port or may be a coupling element of a coupling device or adapter configured for coupling with said port, to permit the release of gas into a pressurized gas port of said appliance or system. The term “coupling element” will be used to refer collectively to a coupling element which is integral with or part of an appliance or system and a stand-alone coupling device for coupling between a container and the appliance or system. The neck is fitted with a plug. The plug has a gas-impermeable barrier element sealing said enclosure and configured for irreversible opening through rupture, piercing, deformation or displacement (to be referred to, collectively, as “irreversible opening”) by a shaft of a gas channeling member of said coupling element that extends from a base to an end, which may be tapered or spiked. The plug also has one or more sealing elements, which are distinct from said barrier element, and are configured for forming a gas-tight association with said shaft to thereby block gas leakage after coupling.
Typically, in order to ensure that it will not be undesirably ruptured, deformed or displaced, the barrier element should be designed to withstand pressure higher than that of the intended gas pressure inside said enclosure. Furthermore, for safety reasons, the barrier element should be designed to have a defined burst threshold pressure that will cause the barrier element to burst open. This may avoid danger in the event of pressure build-up within the container, e.g. as a result of exposure to excessive heat.
By an embodiment of this disclosure, the plug in the pressurized gas container is formed with a bore that is fitted with a gas impermeable barrier element for forming a gas impermeable barrier between the pressurized gas enclosure and said bore. The barrier element can be non-reversibly opened by a shaft of a gas-channeling member, extending from a shaft base to a shaft end, the shaft end that penetrates the cavity during association of the neck with the coupling element, and during this penetration it causes the barrier element to irreversibly open. Once irreversibly opened, gas can flow past the now opened barrier element. The shaft end may be tapered, spiked or pointed, to facilitate rupturing or breaking of barrier. The bore, however, is also configured with at least one sealing element, typically one or more O-rings disposed proximal to the bore's exterior end or in between the barrier element and said exterior end, adapted for forming a gas-tight association with said spiked member, thereby hindering undesired gas leakage through said bore. The shaft of the gas-channeling member has one or more openings at a location proximal to its end such that, following complete penetration of said shaft and thereby causing the irreversible opening of the barrier element, are in gas communication with said enclosure; namely the opening are at the shaft's free end or in between said free end and the point of contact with said at least one sealing element. The openings lead into a gas-ducting lumen formed within the shaft that channels the gas into the pressurized gas sub-system of the appliance or system. Thus, once the barrier element is opened, the gas can flow through the openings and the gas-ducting lumen into the pressurized gas sub-system of the appliance or system for use therein.
By an embodiment of this disclosure, the barrier element is a pierceable solid element, e.g. a sheet, thin plate, film, etc. (to be referred to herein, collectively, as “pierceable element”), which may, for example, be made of metal or a plastic material. The pierceable element should be able to withstand pressure at least equal to (or slightly more than) the intended pressure of the gas inside the container.
By another embodiment, the barrier element is constituted by a displaceable or deformable plug or leaf, typically made of an elastic material, which is maintained in a sealing state pressed against a plug seat and may be irreversibly displaced or deformed by the gas channeling spike member.
By an embodiment of this disclosure, the plug is fitted into the container's neck, such that its bore is substantially coaxial (save for small manufacturing tolerance) with said neck. It should further be noted that this disclosure is certainly not limited to such coaxial configurations and the main features of this disclosure may also be embodied in other arrangements; for example, in a plug that is generally L-shaped with a cavity intended for coupling with a spiked member being normal to the axis defined by the neck.
By an embodiment of the current disclosure, the plug is formed as a device to be fitted within the neck of a container blank. Such a device is also an independent aspect of this disclosure. In the following the term “plug” may be used to denote, depending on the context, either a plug within the container's neck or a plug device that is fitted/intended to be fitted into the neck.
By an embodiment of this disclosure, the plug defines an axis extending between an exterior end and an internal end (e.g. having an overall cylindrical shape) and being formed with a generally axial bore extending between the two ends. Such plug is typically formed with a barrier at or proximal to its interior end and with one or more sealing elements formed within the cavity at or proximal to the exterior end or in-between the interior and exterior ends. The sealing elements, as already noted above, are typically O-rings that may be fitted within a circumferential groove formed within the wall of the cavity.
The plug may be formed with an uneven external surface (i.e. non-uniform profile) which may serve for tighter engagement with surrounding portions of the neck into which the plug device is fitted.
By one embodiment, the plug is pressure-fitted within the neck. This means that either the plug is inserted into the neck and the surrounding neck portion is then crimped over the side walls of the plug, or that a plug device is forcibly inserted into the neck thereby slightly deforming the upper end portion of the neck to ensure a pressure-tight fit. By another embodiment the plug is screw-fitted within the opening of the container. By yet another embodiment the plug is secured within the opening by welding. By still another embodiment the plug is secured within the opening by a combination of screw-fitting and welding, screw-fitting and pressure fitting or pressure fitting and welding.
The plug device, according to an embodiment of this disclosure, comprises external walls and a bore formed within it and includes a barrier element and at least one sealing element of the kind specified above.
By an embodiment of this disclosure the container comprises a flow-restricting element configured to permit (i) free flow of pressurized gas as long as the neck is coupled to the coupling element and (ii) limited outflow of gas upon decoupling of the coupling element from the neck. Thus, in the event that the container is detached from the coupling element of the system or appliance, the gas remaining in the container will not outflow in a rapid or violent burst but will rather be gradually released. The flow-restricting element may comprise a floating member (which may be rounded, e.g. ball-shaped) displaceable between a seated position in which it bears against a seat at an outlet of the container to thereby partially seal the container's outlet and an unseated position in which it is distanced from said seat and permitting free gas outflow through said outlet, said floating member being biased into said seated position and being configured for displacement into said unseated position by the shaft of said gas channeling member. The flow-restricting element is typically situated in a position interior to said barrier element and may comprise a nesting member fitted within the container's neck and having an upper segment defining said seat and a lower segment comprising arms configured to limit displacement of said floating member. In order to provide for a limited gas outflow, gas channels are typically defined in the flow-restricting element such that in the seated position of the floating member trickled gas outflow is enabled. By one configuration, such channels are defined in the seat. The floating element may be for a seal with the seat other than in portions in which such channels are defined. By another configuration the association between the floating member and the seat is such to permit some gas flow in a small gap between said member and said seat. For example, the seal or the member may have a rough surface to thereby define small gaps between the two to thereby permit trickled gas outflow. By yet another configuration channels are defined between the nesting member and the interior faces of the neck to facilitate gas outflow when the floating member is seated in said seat. The current disclosure also provides a multipack comprising (i) a holding rack, (ii) a carrying element, typically integral with the rack, and (iii) a plurality of pressurized gas containers, in particular, but not exclusive, a plurality of pressurized carbon dioxide-containing canisters, each of which is configured for coupling with said adapter (whether an integral part of an appliance or system or a coupling device), and once coupled, release gas into the pressurized gas port of the appliance or system. The holding rack may be configured as a case, box, etc., having a plurality of slots for holding the canisters and may be made of cardboard, plastic, or any other suitable material. The overall configuration of the multipack of this disclosure resembles that of multipacks for bottles or cans. The rack may also be configured for holding the containers in a hanging fashion. The containers in such multipacks are typically such intended for single use containers, e.g. of the kind disclosed herein. The multipack of this disclosure may also comprise a coupling device.
Another aspect of this disclosure is a method for the manufacture of a container that holds pressurized gas. The method is described with a certain sequence of steps, but it should be understood that while the sequence of steps may be carried out as described, certain steps may also be carried out in a different sequence or some steps may be carried out partially or fully in parallel. For example, described below is fitting of a plug device at the leading end of a plunger, which may be carried out before, simultaneously or after association of the container blank with the seat.
The method comprises providing a container blank, introducing pressurized gas through the open end of the neck portion, introducing a plug device into the neck and tightly affixing the plug within the neck. The container blank is of the kind configured to hold the pressurized gas and having a container body with an integral neck, the neck having an open end portion and at least said end portion being formable under defined conditions. After pressurized gas is introduced into the container, the plug device, which is of the kind specified above, is introduced into the open end while maintaining gas pressure. Once the plug device is inserted into the open neck, it is tightly affixed within the neck by applying said condition to thereby form the upper end to tightly engage the plug device's external faces. Such conditions may be a forced compression applied on the end portion of the neck about said device. Where the gas is carbon dioxide, a single use canister for the preparation of carbonated drink is, thus, obtained.
By one embodiment, the method comprises associating the container blank with a block in a gas tight manner, such that (i) the open end portion of the container's neck protrudes through an opening in the block into a working space that is linked to a source of pressurized gas, and that (ii) leakage of gas out of the opening is hindered; then permitting gas to flow from a gas source into the container via said working space; while maintaining gas pressure, inserting and tightly fixing the plug device in the open end of the neck. The tight fixing may be achieved through crimping the end portion of the neck about the plug device to thereby form tight engagement between the neck and side surfaces of the plug device.
Insertion of the plug typically comprises fitting the plug device at a leading end of a plunger, that can axially reciprocate along an axis defined by the neck, between a first plunger position and a second plunger position that is more proximal to said open end. After such fitting, the plunger is axially displaced into the second plunger position to thereby introduce the plug device into the neck's open end.
By another embodiment of the method, the plunger axially reciprocates within an axial bore that is formed in a piston. The piston can also axially reciprocate along the same axis between a first piston position and a second piston position that is more proximal to the neck's open end. In accordance with this embodiment, the tight affixing of the plug device within the neck is carried out while maintaining the plunger in the second plunger position and axially displacing the piston to its second piston position, in which it applies a crimping-biasing force on the neck's upper end to thereby crimp it about the plug device. The piston may comprise a depression formed in the piston's face that faces the neck, in a mid-portion thereof that surrounds said bore (in which the plunger reciprocates). In the second piston position, the depression bears on the upper end of the neck and the overall concave shape of the depression then guides an inward crimping of the necks upper end about the plug device. The depression is typically circular in its perimeter and its dimension corresponds to that of the neck's upper end.
As will be appreciated, depending on the intended manner of securing the plug within the opening of the container's neck, additional or alternative steps for such securing may be added, such as rotational insertion of the plug in the case of screw-fitting or a welding step in one of a variety of welding techniques known per se.
Also provided by this disclosure is an apparatus for producing a container of the kind specified herein. The apparatus comprises a block, a pressurized gas conduit and a piston with a plunger. The block defines a working space with axially extending side walls and a base. The pressurized gas conduit leads into said working space and is linked to a pressurized gas source. The piston is received within said working space, forming a gas-tight association with the side walls and is capable of axial reciprocation within the working space between the first piston position and the second piston position more proximal to the said base. An axial bore is formed in said piston and accommodates a plunger. The plunger forms a gas-tight association with the bore's walls and the association is such to permit axial reciprocation of the plunger within the bore, between said first plunger position and said second plunger position which is proximal to said base. The base has an opening that is formed at the end of a seat configured for receiving an upper portion of the container blank, and for forming a gas-tight association therewith; with the upper, open end of the neck protruding through the opening into said working space. The plunger has a leading end and is configured for holding a plug device of the kind specified herein and for introducing the plug device into the upper end of the neck when in the second plunger position. The piston is adapted for applying a crimping-biasing force on the upper end of the neck to thereby crimp said upper end about external faces of said plug device. The piston may have a depression to serve this purpose, of the kind specified above.
The apparatus that may be configured to operate in an operational mode that comprises: associating the upper end of the container with the seat; introducing pressurized gas into the container via the working space; axially displacing the plunger fitted with said plug device into the second plunger position to thereby introduce the device into said open end; and, while maintaining the plunger in said second plunger position, axially displacing the piston to the second piston position in which it applies a crimping-biasing force on the neck's upper end, to thereby crimp it.
The apparatus may be modified, in an analogous manner to that described above in reference to the process, to accommodate additional or alternative means for securing the plug with the container's neck.
Also provided by this disclosure is a container blank with a body and neck integral therewith having an open end; the body is configured for holding pressurized gas; the neck is adapted to receive a plug device of the kind specified. The open end may be formable under defined conditions, e.g. by pressure forming. The container blank is usually made entirely of the same material, which may be metal, e.g. aluminum.
This disclosure provides, by another of its aspects, a coupling element for coupling a gas container, particularly of the kind disclosed herein, to an appliance or system in a manner so as to permit gas supply from the container to a gas conduit of an appliance or system; for example, carbon dioxide appliance or system for the preparation of the carbonated drink. The element comprises a gas channeling member that has an elongated shaft extending axially from a base thereof to a shaft end. The shaft is configured for fitting into a bore of the plug opening in the container and further configured so that, once coupled with the container, it causes irreversible opening of a barrier element that is formed at the inner end of said bore. The shaft has openings at, or proximal to, the shaft end leading into said conduit. The coupling element of this aspect may, by one embodiment, be an element that is formed as a part of said appliance or system. By another embodiment, such an element is an independent coupling device for coupling the container to a gas port of an appliance or system.
By an embodiment of the latter aspect, the coupling element also defines one or more gas-release channels, configured to form, during decoupling of the container and the coupling element, a gas-release conduit between the container's interior and the exterior. The purpose of such gas-release conduit is to enable slow or controlled release of gas from the container's interior, in the event that gas pressure remains within the container prior to such decoupling. This may be a stand-alone controlled release feature or one that functions in conjunction with a mechanism that is an integral part of the container, as described above. This, as noted above, is intended to avoid a violent or abrupt release of pressure upon decoupling.
The gas-release conduit may, by one embodiment, be constituted by one or more axial grooves or recesses formed on the shaft's face that faces the bore's internal wall. In this latter embodiment, the conduit is defined between the shaft and the bore's internal walls.
Provided by another aspect of this disclosure is a coupling device for coupling a pressurized gas container to a pressurized gas port of an appliance or system. The device is configured for coupling to the container's opening, at its first end, and for coupling to a fitting fitment of a gas port of the appliance or system, at its second end. The term “coupling” used herein in connection with the device is intended to denote that the two coupled elements are functionally linked
Defined within said coupling device is a gas conduit that once the device is so coupled establishes a gas-flow channel from the container's opening to the gas port of said appliance or system. Said first end comprises a gas channeling member that has an elongated shaft that extends from a base to a shaft end. The shaft is configured (e.g. in terms of position and dimension) to penetrate the bore of the plug that is disposed in the opening of the container during coupling of the container to said one end to thereby cause an irreversible opening of the barrier element formed at the inner end of said bore. The shaft has openings at or proximal to the shaft end leading into said gas transfer channel, e.g. leading into a lumen formed within the shaft that is linked to said channel.
By one embodiment the coupling device comprises a cup-shaped connector portion at its first end, the connector having an end wall and side walls extending therefrom and being configured for coupling with a neck portion of the pressurized gas container. According to this embodiment the gas channeling member extends within the cup-shaped connector from a base in said end wall. The internal side walls of the connector are, typically screw-threaded and the coupling is then through a screw-type engagement with an external threading on said neck portion. Said cup-shaped connector portion has a ring at its end fitted to the connector portion in a screw-type engagement and serving for fastening the device to said neck portion after coupling.
The coupling device may comprise an outlet valve at the second end configured for sealing the gas outlet of said gas conduit at said second end and for opening upon coupling of said second end to the appliance or system to permit gas egress into the gas-ducting system of said appliance or system. The device may also comprise a safety plug adapted to discharge gas when the pressure within gas transfer channel exceeds a predetermined level.
Once the coupling device is coupled to the pressurized gas container, at its first end, the barrier is opened or ruptured, whereupon gas is free to flow out of the container; the sealing arrangement described above ensures that no gas would leak to the surrounding environment. However, should the device be accidentally decoupled from the container, there is a risk of an abrupt pressurized gas egress from the container to the external environment which, under some circumstances, may be hazardous. Thus, in order to avoid such abrupt gas release, by an embodiment of this disclosure, a safety feature is provided to block unintended decoupling of the coupling device from the pressurized gas container, as long as pressure within the container exceeds the predetermined level, e.g. a level defined by safety standards as being safe. The safety feature includes a safety arrangement which is configured for locking the coupling device onto the container's neck, as long as the gas pressure within the container exceeds said predetermined pressure level. This may be achieved, by an embodiment of this disclosure, by a safety bolt that is configured to lock the coupling device in a coupled state as long as the pressure within the container exceeds said predetermined pressure level. By way of example, such bolt may be maintained in a locked state by a pin that engages with the safety bolt and that is kept in such an engaging state by the gas pressure; and once the gas pressure reduces to a level below said predetermined level, the pin can disengage the bolt, which is thereby released to permit decoupling of the device from the container.
The term “bolt” should be understood to encompass any functional element that can induce such locking.
A coupling device according to an embodiment of this disclosure with a safety arrangement comprises a safety locking element, e.g. a safety bolt configured for fitting into a recess or groove formed in the container's neck to block accidental decoupling of the device from the container. The safety bolt may be configured for displacement, e.g. linearly, between a first, locking bolt position in which it fits into said recess (and thereby blocks decoupling) and a second, releasing bolt position in which it is removed from said recess. The arrangement is typically such that the safety bolt is biased into the second bolt position by an associated urging element and locked in the first position by an associated locking arrangement adapted to (i) lock the bolt in the first bolt position as long as decoupling of the coupling device from the container is to be avoided (namely as long as the gas pressure within the container exceeds said predetermined level), and (ii) release the bolt once the pressure in the container is reduced to a safe pressure level, namely below said predetermined level. Locking of the safety bolt in said locking position and releasing it once the pressure in the container is reduced to a safe level may be achieved by a variety of means.
By one embodiment the locking arrangement comprises a locking pin that can reciprocate between a locking state in which it engages the safety bolt and locks it in the first bolt position, and a releasing state in which the pin is disengaged from the bolt which can, thus, be displaced into the second bolt position. The locking pin is typically biased into the releasing state by an associated urging element, e.g. a spring, and is forced into the locking state (against this biasing force of the urging element) by the gas pressure within the container, as long as the gas pressure exceeds said predetermined pressure level. The locking pin may, for example, reciprocate in a pin bore that is in gas communication with the gas conduit and is, thus, pushed by the gas pressure, against the biasing force of its associated urging elements. For this, the locking pin can have shoulders that form a gas-tight seal with the pin bore's wall such that gas pressure acting on said shoulders forces the pin into the locking state. The pin-associated element imparts an urging force on the locking pin such that it will exceed the force applied by the gas pressure when the pressure level is reduced below said predetermined pressure level to thereby cause its displacement to the releasing states.
The safety bolt may be forced into the first bolt state as part of the coupling action. For example, the device may comprise a locking ring that can rotatably reciprocate between a locking state in which it causes the safety bolt to displace into the first bolt position and an unlocking state in which it permits displacement of the safety bolt into the second bolt position. The arrangement is typically such the locking ring's rotation occurs as part of the coupling action. For example, the ring may be associated with a biasing element that urges it into the locking state and upon coupling it rotates to its locking state thus forcing the bolt into the recess or groove in the container's neck. The piercing of the barrier element permits the pressurized gas to enterer the gas conduit within the coupling device thereby locking the bolt in the first, safety bolt position.
Further provided by this disclosure is an appliance adapted for preparing or dispensing carbonated drink. Such appliance or system may be intended only for the preparation of carbonated drinks or intended for the preparation of carbonated as well as other drinks. The appliance or system comprises a coupling element for coupling with a carbon dioxide containing canister and for receiving the pressurized carbon dioxide therefrom. The coupling element comprises a coupling element for coupling with the end portion of the neck and comprises a gas-channeling member with a spiked end. The canister is of the kind specified above and upon coupling of the neck with the coupling element the gas-channeling member ruptures the barrier element to permit channeling of carbon dioxide from the container to the appliance, while the sealing member maintains gas-tight association with said member to avoid gas leakage.
The present disclosure also encompasses embodiment as defined in the following numbered phrases. It should be noted that these numbered embodiments intended to add to this disclosure and is not intended in any way to be limiting. Note also that although the term “embodiment” is used in a singular form also where a phrase references a previous phrase that in fact relates to many embodiments (for example phrase No. 47 that refers back to phrase No. 46, where the latter relates to several embodiments), such a numbered phrase (e.g. No. 47) is intended to encompass all the embodiments that are encompassed by the embodiment to which it refers, with the added element of defined in a such a referencing numbered phrase.
a container body, defining a pressurized gas enclosure, and a neck integral therewith defining a gas outlet;
the neck
the plug having
the pressurized gas within the container is pressurized carbon dioxide, and is intended for association with a carbonated drink dispensing appliance or system in which the pressurized carbon dioxide is utilized for the preparation of the carbonated drink.
a container body, defining a pressurized gas enclosure and a neck integral therewith defining a gas outlet;
the neck
the plug being formed with a bore that is fitted with a barrier element (within or at end of the bore) that forms a gas impermeable barrier that seals said enclosure,
said barrier element being rupturable or pierceable by a shaft of a gas-channeling member of said coupling element, and
said bore being configured with at least one sealing element for forming a gas-tight association with said shaft.
a holder rack;
a carrying element; and
a plurality of pressurized gas containers, e.g. a plurality of pressurized carbon dioxide-containing canisters.
a bore extending through the plug;
a barrier element fitted in the bore (at an end of or within said bore) and configured for non-reversible rupturing by a shaft of a gas-channeling member of an adapter of an appliance or system; and
one or more sealing elements within said bore, distinct from said barrier element and configured for forming a gas-tight association with said shaft.
In the following methods defined in the independent statements or in dependent ones, the sequence of steps may be as specified or may be a different sequence. Also, some of the specified method steps may also fully or partially overlap other steps, i.e. may be carried out fully or partially in parallel to one another.
(a) providing a container blank configured to hold pressurized gas, the container blank having a container body, defining a pressurized gas enclosure, and a neck at its upper end, the neck having an upper, open end portion, at least said upper end portion being formable under defined conditions;
(b) introducing pressurized gas into said enclosure through said open end;
(c) while maintaining gas pressure, introducing a plug device into said open end, the plug device comprising external side walls and a bore formed within it, the bore being fitted with a barrier element configured for non-reversible rupturing by a shaft of a gas-channeling member of coupling element of a device or system, and comprising one or more sealing elements within said bore distinct from said barrier element and configured for forming a gas-tight association with said member; and
(d) tightly affixing said plug device within said neck by forming said upper end to tightly engage the plug device's external faces.
(m) associating the container blank with a block in a gas tight manner such that (i) the open end of the container's neck protrudes through an opening in the block into a working space that is linked to a source of pressurized gas, and that (ii) leakage of gas out of the opening is hindered;
(n) permitting flow of gas from the gas source into the container via said working space;
(o) while maintaining gas pressure, inserting said plug device into said open end; and
(p) tightly affixing said plug device within said neck, e.g. by crimping said upper end to tightly engage said side surfaces.
(o1) fitting said plug device at a leading end of a plunger that can axially reciprocate along an axis defined by said neck between a first plunger position and a second plunger position that is more proximal to said open end, and
(o2) axially displacing said plunger into the second plunger position to thereby insert the plug device into said neck.
said plunger axially reciprocates within an axial bore formed in a piston;
the piston can axially reciprocate along said axis between a first piston position and a second piston position that is more proximal to said open end; and wherein step (p) comprises
while maintaining the plunger is said second plunger position, axially displacing said piston to said second piston position in which it applies a crimping-biasing force on said upper end to thereby crimp said upper end.
the piston comprises a depression in the piston's face that faces said neck in a mid-portion thereof that surrounds said bore; and wherein
in said second piston position the depression bears on said upper end of the neck and such bearing applies said crimping-biasing force.
said depression is circular and its perimeter is dimensioned to correspond to that of said upper end.
a block defining a working space with axially extending side walls and with a base;
a pressurized gas conduit leading into said working space and linked to a pressurized gas source;
a piston, received in said working space and forming a gas-tight association with said side walls, the piston being capable of axial reciprocation within the working space between a first piston position and a second piston position that is more proximal to said base;
an axial bore formed in said piston and a plunger that is accommodated in said bore, forms a gas-tight association with bore's walls and that can axially reciprocate within said bore between a first plunger position and a second plunger position that is more proximal to said base;
the base having an opening formed at the end of a seat, the seat being configured for receiving an upper end of a container blank and for forming a gas-tight association therewith, with the upper end of the neck protruding through the opening into said working space;
the plunger having a leading end configured for holding a plug device as defined in any one of embodiments 29-41 and for introducing the plug device into the upper end of the neck when in the second plunger position;
the piston being adapted for applying a crimping-biasing force on said upper end to thereby crimp said upper end on external faces of said plug device.
the piston comprises a depression formed in the piston's face that faces said neck in a mid-portion thereof that surrounds said bore; and wherein
in said second piston position the depression bears on said upper end of the neck and such bearing applies said crimping-biasing force.
(a) associating the upper end of the container with the seat;
(b) introducing pressurized gas into the container via said working space;
(c) axially displacing the plunger fitted with said plug device into the second plunger position to thereby introduce the device into said open end; and
(d) while maintaining the plunger is said second plunger position, axially displacing said piston to said second piston position in which it applies a crimping-biasing force on said upper end to thereby crimp said upper end.
the body is configured for holding pressurized gas;
the neck is adapted to receive a plug device as defined in any one of embodiments 29-41; and
said upper end being formable under defined conditions.
the device is configured for coupling to the container's opening, at its first end, and for coupling to a gas port of appliance or system, at its other end, and defined within it is a gas conduit that once so coupled channels gas from the container's opening to the gas port of said appliance or system;
said first end comprises a gas channeling member having an elongated shaft that extends from a base to a shaft end, the shaft being configured for fitting into a bore of a plug in the opening of the container and, once coupled with the container, causes irreversible opening of a barrier element formed at an inner end of said bore; and
the shaft having openings at or proximal to the shaft end leading into said gas conduit.
said first end comprises a cup-shaped connector portion with an end wall and side walls that is configured for coupling with a neck portion of the pressurized gas container; and
said gas channeling member extends from a base in said end wall within the cup-shaped connector portion.
a body having a cup-shaped connector with and end wall and side walls at its first end that is configured for coupling to a neck of the gas container's, and having a fitting arrangement at its second end for coupling to a fitment of a gas port of an appliance or system;
a gas channeling member having an elongated shaft with a lumen and extending from a base in said end wall to a shaft end, the shaft end having openings into said lumen; the shaft being configured for fitting into a bore of a plug in the opening of the container and, once coupled with the container, causes irreversible opening of a barrier element formed at an inner end of said bore;
a gas conduit formed within said body and linking said lumen with a gas outlet at said second end;
an outlet valve for sealing said gas outlet and for opening the outlet upon coupling of said second end to the appliance or system to permit gas egress into said gas port; and
a safety bolt configured for fitting into a recess or groove formed in the container's neck to block accidental decoupling of the device from the container.
said safety bolt can be displaced between a first bolt position in which it engages, e.g. fits into said recess or groove, and a second bolt position in which it is removed from said recess.
the safety bolt is biased into said second bolt position, e.g. by an associated urging element.
the safety bolt is locked in the first bolt position by an associated locking arrangement that is adapted to (i) lock the bolt in said first position as long as the gas pressure within said container exceeds a predetermined pressure, and (ii) release the bolt once the pressure in the container is reduced to a pressure level that is below said predetermined level.
can reciprocate between a locking state in which it engages the bolt and locks it in the first bolt position and a releasing state in which pin disengages the bolt to permit it to be displaced into the second bolt position;
is biased into the releasing state by an urging element; and
is forced into the locking state against the biasing force of the urging element by the gas pressure within the container as long as said pressure exceeds a predetermined pressure.
reciprocates in a pin bore that is in gas communication with the gas conduit, and
the pin has shoulders that form a gas-tight seal with the pin bore's wall such that gas pressure on said shoulders forces the pin into the blocking state.
said adapter comprises a coupling element and a gas channeling member having an elongated shaft that extends from a base to a shaft end, the shaft being configured for fitting into a bore of a plug in the opening of the canister and, once coupled with the canister, causes irreversible opening of a barrier element formed at an inner end of said bore;
the canister comprises a canister body and a neck integral therewith at its upper end fitted with the plug, the plug having a barrier element configured for non-reversible rupturing by said gas-channeling member and having one or more sealing elements, distinct from said barrier element, and configured for forming a gas-tight association with said member; and wherein
upon coupling of said neck with said adapter said gas-channeling member ruptures said barrier element to permit channeling of pressurized carbon dioxide from the container to the appliance while the sealing member maintains a gas-tight association with said member to avoid gas leakage.
In order to better understand the subject matter that is disclosed herein and to exemplify how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
In the following, the present disclosure will be elaborated and illustrated through description of some specific embodiments with reference to the annexed drawings. The illustrated embodiments refer to a canister, such as that containing carbon dioxide for use in an appliance or system for preparation of a carbonated drink. It is to be understood that the figures are intended to exemplify the general principles of this disclosure and are not to be construed in any way to be limiting.
The description of canister below makes occasional reference to a top or bottom. This is done for convenience of description only. As can be appreciated in use the orientation has no functional significance and it may be coupled to the appliance or system in any desired orientation according to various engineering or other considerations.
Referring first to
The upper portion of the canister including neck 104 is shown in
The device 110 includes a bore 122 which is coaxial with bore 124 within neck 104. Formed at the bottom end of plug 110 is a barrier element 126 which is constituted by a metal sheet that seals enclosure 103. The plug also includes a sealing member which is constituted by an O-ring 128 that is accommodated within a circumferential groove 130 formed within the internal walls of bore 122.
Reference is now being made to
Further illustrated in these figures are the functional components of the apparatus for carrying out the method for said filling and manufacturing (which are annotated, particularly, in
The seat has circumferential grooves that accommodate O-rings 152, 154 and, as can be seen in
Piston 160 also has an axial bore 166 accommodating plunger 170 that can also axially reciprocate between the first plunger position, shown in
The sequence of operations will now be described with reference to distinct steps shown in
Preparatory to the step shown in
In the next step, shown schematically in
In the next step, shown in
Reference is now made to
The spiked member has a base 223 that is accommodated in seat 224, the seat including also O-rings 222 to ensure gas-tight association. The accommodation of base 223 in seat 224 may, for example, be through a screw-type engagement.
The coupling between the coupling element and the canister neck is, in this case, a screwed type engagement; but, as can be appreciated, this is an example only of a variety of other coupling arrangements. Upon coupling, the spike member penetrates cavity 124 within plug 110 and by further screwing, as shown in
Reference is now made to
In the embodiments of
The plug 310A shown in an explode view in
In the embodiments of
In
Similarly as in the case of the embodiments of
In the embodiments of
All the embodiments of the plug, shown above, are various configurations of a barrier element and a plug body that are separately produced and are assembled and tightly fitted to one another in a gas-tight manner, to thereby form the plug. It should be noted, however, that it is also possible, under other embodiments of this disclosure, to construct the plug body and the barrier element out of a single integral metal block, e.g. through machining, a die casting or a combination of the two.
Reference is now being made to
In
Upon coupling of the canister's neck with gas-channeling member 208, shaft 210 penetrates through lumen 122, in a manner similar to that described above, to rupture barrier 660 and in its fully coupled state, openings 214 come to be positioned within void 672. At this state the tapered end 212 of the shaft limits the upward displacement of member 678, as seen in
In the event of premature decoupling, when there is still gas pressure remaining within the canister, the pressure differential between the canister's interior and the exterior will cause upward displacement of floating member 678 to its fully upward position to rest within seat 682.
As can best be seen in
In the embodiments shown in
Referring now to
Device 702 is comprised of device body 704, a cup-shaped connector element 706 and gas channeling member 708 at end 791, safety plug 718, and valve element 724 at end 792. Gas channeling member 708 has a structure similar to gas channeling member 208 shown in
Member 708 has a base 723 which is fitted within a seat 724 and is configured with a lateral groove 725 accommodating O-ring 722 that provides for a gas-tight seal to avoid leakage out of said gas conduit.
The shaft 709 of member 708 protrudes into cavity 730 within cup-shaped connector element 706, the side walls of which are internally threaded (the threading—not shown). Connector element 706 is constituted by side walls which extend from body 704 and by a fastening element 732 that is coupled to said walls in a screw-type manner. Turning of the fastening ring 732 will distance it away from the member and owing to the outwardly tapering contour of the neck the external lips of ring 732 will then bear tightly against the tapering portion to thereby secure the coupling of the coupling device to the canister.
The other end of the device has an external, coarse screw threading 740 for coupling with a matching connector (not shown) of an appliance or system.
Valve 744 includes a base 746, plunger 748, spring 750 and O-ring 752. Plunger 748 has a stem 754 that is accommodated within bore 756 in base 746 and can axially displace against the biasing force of spring 750 that is accommodated with spring-accommodating cavity 734. In the position shown in
Cavity 766 accommodates safety plug 764 and is linked through conduit 768 to spring-accommodating cavity 734. The conduit 768 is sealed by membrane 770 and when pressure increases above a defined threshold level, membrane 770 opens permitting gas release to the outside.
Reference is now being made to
In
Coupling device 1000 has a base portion 1002 and accommodates a cup-shaped cavity 730A that is internally screw-threaded and adapted for screw-tight coupling with the neck of a canister.
Fitted over the base portion 1002 is a ring element 1004 having an internal guiding projection 1006 that fits into groove 1008 defined on the exterior of base portion 1002, to thereby guide circular rotation of ring 1004. Accommodated in groove 1008 is also a helical spring 1010 that rests against projection 1006 at its one end and a barrier at the end of groove 1008 (not shown). The urging force of spring 1010 biases the ring to rotate in a direction represented by arrow 1012 (clockwise in
Coupling device 1000 also includes a safety bolt 1022 which fits into bore 1024 and has an associated spring 1026 that biases the bolt element in a radial direction from a first, locking position to a second, releasing position of the bolt. Safety bolt 1022, as can be seen in
The safety arrangement of this embodiment includes, in addition to safety bolt 1022, also blocking pin 1032 that is accommodated in pin bore 1034. Pin 1032 has a broader shoulder 1036 at its rear end, snugly associated with the walls of pin bore 1032 having a lateral groove accommodating an O-ring 1038 that forms a gas tight seal with the walls of bore 1032 and thereby defining a head space 1042. Head space 1042 is linked through lateral bore 1044 to cavity 734A, which is part of the gas conduit 738A within the coupling device.
When pressurized gas enters the head space 1042 through lateral bore 1044, it applies downward pressure on pin 1032 which is then axially displaced from its position shown in
Pin 1032 is associated with spring 1050 that provides a biasing force on the pin in a direction away from bolt 1022. Once pressure in the canister and consequently also in head space 1042 is reduced below a certain pressure (that is a pressure defined by the properties of the spring, where the force acting by the gas pressure on shoulders 1036 equals the opposite biasing force of the spring), pin 1032 can then be displaced away from the bolt, by the force of the spring to the position shown in
Ring 1004 has an abutment 1054, seen cross-section in
Locking of the coupling device 1000 onto the neck of a canister, upon coupling, is in fact automatic. Once the canister's neck is coupled with the device, as seen in
Reference is now being made to
The coupling element 808, which in this embodiment forms a functional element of an appliance or system (although similar functional coupling features may also be included in a coupling element that is an independent device), includes a shaft 810 with a shaft end 812 that in the coupling state, shown in
Shaft 810 is formed with a peripheral axial recess 822 that extends upward from shaft end 812 and ending at shoulders 824. In the coupled state shown in
During decoupling, as seen in
Reference is now made to
Number | Date | Country | |
---|---|---|---|
61935357 | Feb 2014 | US | |
61985540 | Apr 2014 | US | |
62044344 | Sep 2014 | US | |
62067538 | Oct 2014 | US | |
62120443 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IL2015/050109 | Jan 2015 | US |
Child | 14811055 | US |