This invention relates generally to dispensing pressurized gas, e.g., for re-pressurizing a bottle of sparkling wine after pouring wine from the bottle.
One or more embodiments in accordance with aspects of the invention allow a user to dispense a beverage, such as wine, from a bottle or other container. In some cases, dispensing of liquid from such a bottle may be performed one or more times, and a stopper may be engaged with the bottle after each beverage dispensing to seal closed the interior of the bottle. Thus, the beverage may be dispensed from the bottle multiple times and stored for extended periods between each dispensing while minimizing effect on beverage quality. In some embodiments, little or no gas, such as air, which is reactive with the beverage, may be introduced into or remain in the bottle after dispensing of beverage from within the bottle. Thus, in some embodiments, a user may dispense wine from a wine bottle and subsequently purge air from the bottle and seal the bottle from air or other potentially damaging gasses or liquids entering into the bottle. In some embodiments, a pressure above ambient pressure may be introduced into and maintained in the bottle after dispensing is complete, which may help maintain a carbonation level in a sparkling beverage, and such pressure may be established by introducing pressurized gas through the stopper.
In one embodiment, a pressurized gas source for use in providing pressurized gas into a beverage container or other receptacle includes a housing with a support for a gas cylinder. The housing may be arranged to be held by hand, e.g., having a handle that can be gripped or provide aid in gripping by a user. A gas outlet may be mounted to the housing, e.g., at a bottom end of the housing, and arranged to provide the pressurized gas for delivery to the beverage container or other receptacle. For example, the gas outlet may be arranged with a valve so that pressing the housing downwardly onto a gas port of a gas receiving device (such as a stopper on a beverage container) moves a portion of the value upwardly and opens the valve to deliver gas. Removing downward force on the housing may cause the valve to close and stop gas delivery. A regulator may be supported by the housing and arranged to receive gas at a first pressure from the gas cylinder and to provide gas at a second pressure lower than the first pressure to the gas outlet. The regulator may be arranged in a variety of ways, such as having one or more pressure regulation stages, an adjustable output pressure, etc. A piercing lance may be arranged to pierce an outlet of the gas cylinder to release the pressurized gas, and may be fixed relative to the regulator. For example, the piercing lance may be attached to a valve body of the regulator. The regulator and the piercing lance may be movable relative to both the housing and the gas cylinder to pierce the outlet of the gas cylinder. Thus, the gas cylinder support may be arranged to hold the gas cylinder stationary relative to the housing during movement of the regulator and piercing lance to pierce the outlet of the gas cylinder. This arrangement may allow the gas source to accommodate a wide variety of differently sized and/or shaped gas cylinders because the cylinders need only be held in a stationary position in the housing to allow for effective and repeatable piercing.
In one embodiment, the housing includes a lever mounted for pivotal movement and that is coupled to move the regulator and piercing lance between retracted and piercing positions. For example, the lever may be movable between open and closed positions to cause the regulator and lance to move between retracted and piercing positions, respectively. In some embodiments, the lever defines an exterior surface of the housing, e.g., a user may grasp and move an exterior portion of the housing (the lever) to cause a gas cylinder to be pierced and/or released from the gas source. In one embodiment, the lever includes a cam that contacts and moves the regulator and piercing lance from the retracted position to the piercing position. In one example, the regulator may include a follower, such as a rail or other cam follower, which moves according to movement of the cam attached to the lever. The regulator and piercing lance may be spring biased to move to the retracted position, e.g., the lever may operate to move the regulator and lance toward the piercing position, and a spring may operate to move the regulator and lance toward the retracted position.
In one embodiment, the housing includes a door that is movable between open and closed positions to open and close a gas cylinder compartment. In some cases, the door may include a cylinder holder so that a user may place a cylinder in the holder on the door, and then close the door to load the cylinder in the housing of the gas supply. To accommodate differently sized cylinders, an adapter may receive a lower portion of the cylinder and the adapter and cylinder may be placed in the cylinder holder. The housing may include a latch to hold the door in the closed position, e.g., once the door is in the closed position, the door cannot be moved to the open position unless the latch is released. In some cases, the lever used to move the regulator and lance may be arranged to prevent operation of the latch to open the door when the lever is in the closed position. For example, in some cases the lever defines an exterior surface of the housing, and in the closed position the lever covers the latch. Thus, a user may have to move the lever to the open position to gain access to the latch so that the door for the gas cylinder compartment can be opened. This may help ensure that a cylinder in the housing is vented before the door is opened, e.g., movement of the lever will disengage the lance from the cylinder, allowing the cylinder to vent before the door is opened.
In some embodiments, the support for the gas cylinder includes a U-shaped plate arranged to receive a portion of a neck of the gas cylinder, and the support may be arranged to counter a piercing force of the piercing lance in piercing the outlet of the gas cylinder. That is, the support may not only hold the cylinder in the gas cylinder compartment but provide needed force on the cylinder to counter the force of the lance during piercing. In some embodiments, the gas cylinder may have a flange arranged at the neck of the cylinder, and the support may be arranged to receive the neck of the gas cylinder with the flange positioned on an upper surface of the support. Receipt of the neck and/or flange by the support may suitably position the cylinder in a vertical direction (e.g., parallel to the piercing direction) as well as lateral directions, e.g., transverse to the piercing direction. In some cases, the housing includes a gas cylinder holder arranged for movement between open and closed positions, and wherein the gas cylinder holder is arranged to position a portion of the gas cylinder on the support with movement to the closed position. For example, the cylinder holder may be mounted on a door so that the cylinder holder can receive a cylinder with the door in the open position, and so that the cylinder holder suitably positions the cylinder on the support when the door is moved to the closed position.
In some embodiments, the housing has an elongated shape with a top and a bottom, and the gas outlet is located at the bottom of the housing. The support for the gas cylinder may be arranged to support the gas cylinder with the outlet of the gas cylinder located at an uppermost part of the gas cylinder. That is, the gas cylinder may be oriented vertically with the gas outlet of the cylinder located above other portions of the cylinder. This allows the gas outlet to be placed over a gas receiving component and to dispense gas while the cylinder is oriented vertically. This arrangement may be useful for use with carbon dioxide cylinders, which may contain liquid and gas forms of carbon dioxide. By orienting the cylinder vertically, liquid carbon dioxide may be prevented from exiting the cylinder during use. In addition, or alternately, to orienting the gas cylinder with the gas outlet located at an uppermost portion of the gas cylinder during gas dispensing, gas received from the gas cylinder may be routed or otherwise carried in an upward direction, and then downwardly to the gas outlet of the pressurized gas source. As an example, a conduit that receives gas from the gas cylinder may carry gas upwardly during dispensing, and then turn downwardly to the gas outlet of the pressurized gas source. This may help prevent liquid received from the gas cylinder from reaching the gas outlet of the pressurized gas source, which could cause freezing of some components such as a gas outlet valve. That is, carbon dioxide is often contained in a gas cylinder in liquid and gas forms. If liquid carbon dioxide is received by the conduit, routing the flow upwardly and then downwardly can help keep liquid from reaching the downward segment of the conduit and thus keep the liquid from reaching the gas outlet of the pressurized gas source.
In one embodiment, a pressurized gas source includes a housing including a support for a gas cylinder holding the pressurized gas, a piercing lance arranged to pierce an outlet of the gas cylinder to release the pressurized gas, and a gas outlet mounted to the housing, fluidly coupled to the piercing lance and arranged to provide the pressurized gas for delivery to the beverage container. A door may be movable between open and closed positions on the housing to open and close a gas cylinder compartment, and an actuator may be arranged to move the piercing lance and the gas cylinder relative to each other to cause the piercing lance to pierce the outlet of the gas cylinder. The actuator may have a piercing state in which the lance and gas cylinder are engaged and a retracted state in which the lance and gas cylinder are disengaged. For example, the actuator may include a lever arranged to move the lance and gas cylinder relative to each other based on movement of the lever between open and closed positions. The door may be prevented from movement from the closed position unless the actuator is in the disengaged state, e.g., the gas cylinder compartment may be locked in the closed position and cannot be moved unless the lever is moved to the open position. In some cases, the lever may define an exterior surface of the housing and may cover at least a part of the door in the closed position, preventing opening of the door.
In one embodiment, a gas cylinder includes a body having a storage volume and a neck with a top surface having a piercable gas outlet. A flange may be secured to the neck, e.g., extending radially outwardly from the neck, and arranged to support the gas cylinder for piercing of the gas outlet. Thus, the flange may receive forces from the support of a gas supply necessary to counter the piercing force of the lance. A cap may be secured to the neck and have a sidewall extending around the top surface and defining an inner space and an upper opening to the inner space. A gasket may be located in the inner space and arranged to form a seal with the top surface and form a seal with a piercing element that extends into the inner space to pierce the gas outlet.
In some cases, the flange and the cap are made as single unitary piece, while in other cases the flange is made as one piece with the body and separately from the cap. In some embodiments, the sidewall of the cap is arranged to extend above the top surface of the neck. For example, the sidewall may be located at an upper portion of the cap and a lower portion of the cap may include an internal thread arranged to engage with an external thread on the cylinder neck. The gasket may have an upper surface with a region of the upper surface being exposed at the upper opening of the cap. The upper surface of the gasket may be arranged to contact the piercing element received in the upper opening of the cap to pierce the gas outlet of the cylinder, and a lower surface arranged to form the seal with the top surface of the neck. In some embodiments, the cap includes an upper wall having an annular shape that extends radially inwardly from the sidewall and includes a radially inner part that defines the upper opening. The gasket may have an uppermost part of an upper surface located radially inward of the radially inner part of the upper wall, e.g., so the uppermost part is exposed at the upper opening for contact with the piercing lance. In some cases, the uppermost part of the upper surface of the gasket may extend into the upper opening. The inner space of the cap may have a cylindrical shape and the gasket may have a torus shape, although other shapes are possible. Contact of the piercing element with the gasket may cause the gasket to change shape and to at least partially conform to the shape of the inner space defined by the cap and the piercing element. In some embodiments, the upper opening in the cap may be operable to engage a piercing element and prevent rotation of the gas cylinder relative to the piercing element.
In one embodiment, a stopper is provided for use with a beverage container having a neck, an opening at the neck to access an internal volume of the container, and a lip on an outer surface of the neck. The stopper may include a stopper body having a sealing surface arranged to contact and form a seal with a portion of the neck around the opening, e.g., to seal the interior space of the bottle from gasses or other external environmental conditions. The stopper may include a gas inlet port arranged to receive pressurized gas from the gas outlet of the gas source and deliver the pressurized gas into the interior space of the container. The stopper may be arranged to seal the opening of the container to hold or otherwise suitably maintain a pressure above ambient in the container, e.g., to help keep a carbonation level of the beverage at a suitable level. For example, the stopper may include a gas pathway that extends from a gas inlet port to a gas outlet. The gas pathway may extend from a top of the stopper body where the gas inlet port is located to a location adjacent the sealing surface where the gas outlet is located to introduce pressurized gas into the container. A check valve or other one-way valve may be provided in the gas pathway to prevent flow from the gas outlet to the inlet. A vent and/or pressure indicator may be provided with the stopper as well, e.g., to vent pressure over a threshold level to allow purging of air from a bottle and indicate a pressure in the bottle.
Various exemplary embodiments of the device are further depicted and described below.
Aspects of the invention are described with reference to various embodiments, and to the figures, which include:
Aspects of the invention are described below with reference to illustrative embodiments, but it should be understood that aspects of the invention are not to be construed narrowly in view of the specific embodiments described. Thus, aspects of the invention are not limited to the embodiments described herein. It should also be understood that various aspects of the invention may be used alone and/or in any suitable combination with each other, and thus various embodiments should not be interpreted as requiring any particular combination or combinations of features. Instead, one or more features of the embodiments described may be combined with any other suitable features of other embodiments. For example, the embodiment of a gas supply below includes a regulator and lance that are movable relative to the housing and gas cylinder, as well as a door of a gas cylinder compartment that can be opened only after a lever that operates a piercing operation is moved to an open position. These features may be used independently of each other, e.g., the gas cylinder door feature may be used in a gas supply that moves a cylinder relative to the housing for piercing, and vice versa.
As shown in
The gas source 1 may include an actuator to cause the lance to pierce the gas cylinder. In this embodiment, the actuator includes a lever 24 that is mounted for pivotal movement about a pivot axis 241, which can be seen in
Although not required, in this embodiment a portion of the lever 24 defines an external surface of the housing 2. This may enable a user to more easily identify the function of the lever 24, as well as access the lever 24. In addition, this may enable to the lever 24 to control whether and how a gas cylinder is removed from, or provided to the gas source 1. For example, in this embodiment, the gas source 1 includes a door 25 that covers a gas cylinder compartment where the gas cylinder 4 is located. The door 25 is movable between the closed position in
In this embodiment, the door 25 is pivotally mounted near the bottom 22 of the housing 2 so that the door 25 can pivot forwardly and downwardly to expose the gas cylinder compartment. The door 25 includes a cylinder holder 251 on an inner side, allowing a cylinder 4 to be placed on the inner side of the door 25 and the door 25 moved to the closed position to mount the cylinder 4 in the gas cylinder compartment. The cylinder holder 251 is arranged to hold multiple different sizes and shapes of cylinders 4, including cylinders 4 of different lengths. In some cases, an adapter 252 may be used with a cylinder 4, e.g., where the cylinder 4 is smaller than a typical or nominal size. In such a case, the cylinder 4 may be placed in the adapter 252, and the combination adapter/cylinder placed into the cylinder holder 251. The door 25 may then be moved to the closed position to place the cylinder 4 in the gas cylinder compartment of the housing 2.
The cylinder compartment includes a support 3 to hold the cylinder 4 in the gas cylinder compartment. In this embodiment, the support 3 is arranged to support the gas cylinder 4 with the outlet of the gas cylinder located at an uppermost part of the gas cylinder 4. That is, the gas cylinder 4 is oriented vertically with the outlet of the cylinder located above other portions of the cylinder. This arrangement may be useful for use with carbon dioxide cylinders, which may contain liquid and gas forms of carbon dioxide. By orienting the cylinder vertically, liquid carbon dioxide may be prevented from exiting the cylinder during use. In addition, or alternately, to orienting the gas cylinder with the gas outlet located at an uppermost portion of the gas cylinder during gas dispensing, gas received from the gas cylinder 4 may be routed or otherwise carried in an upward direction, and then downwardly to the gas outlet 9. For example, the regulator 5 and conduit 55 direct fluid received from the gas cylinder 4 upwardly in an initial flow path, and then the conduit 55 turns downwardly to the gas outlet 9. This may help prevent liquid received from the gas cylinder 4 from reaching the gas outlet 9, which could cause freezing of some components such as a gas outlet valve. That is, if liquid carbon dioxide is received by the conduit 55, routing the flow upwardly and then downwardly can help keep liquid from reaching the downward segment of the conduit and thus keep the liquid from reaching the gas outlet of the pressurized gas source. In some cases, the initial upward flow path may help prevent liquid from reaching an uppermost part of the conduit 55, e.g., because liquid is more dense than gas. Also, the upward, then downward flow path of the conduit 55 may increase the overall length of the flow path, helping to warm any liquid in the conduit 55 so the liquid evaporates to a gas in the conduit 55.
The support 3 for the gas cylinder 4 may also be arranged to counter the force applied by the piercing lance 6 during piercing. That is, the force required to pierce the gas outlet of the cylinder 4 may vary, but in some cases may be relatively high, e.g., 10 lbs or more. The support 3 may provide all necessary counter force on the cylinder 4 to allow for effective piercing by the lance 6, e.g., the support 3 may prevent movement of the cylinder 4 relative to the housing during piercing. The support 3 may engage with the cylinder 4 in different ways, such as by engaging with a neck of the cylinder, a cap engaged with the cylinder neck, etc., and in this embodiment the support 3 is arranged to engage with a flange that is attached to the cylinder neck.
When a cylinder 4 like that in
As noted above, the gas source 1 may be used to re-pressurize carbonated beverage containers after the containers are opened to dispense a beverage. To introduce pressurized gas into the container, a stopper may be used to deliver the pressurized gas and hold the interior space of the container under pressure for an extended period.
While aspects of the invention have been shown and described with reference to illustrative embodiments, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 62/986,038 filed Mar. 6, 2020, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5056676 | Allen et al. | Oct 1991 | A |
5803288 | Munini | Sep 1998 | A |
6213323 | Ferrari | Apr 2001 | B1 |
7845522 | Grill | Dec 2010 | B2 |
9248416 | Striebinger | Feb 2016 | B2 |
10160560 | Schovain | Dec 2018 | B2 |
20030131885 | Birtcher | Jul 2003 | A1 |
20140360971 | Marino | Dec 2014 | A1 |
20150201794 | Hoffmann | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
WO 2007145641 | Dec 2007 | WO |
WO 2014144873 | Sep 2014 | WO |
Entry |
---|
Invitation to Pay Additional Fees for International Application No. PCT/US2021/021041, dated Jun. 28, 2021. |
International Search Report and Written Opinion for International Application No. PCT/US2021/021041, dated Aug. 18, 2021. |
International Preliminary Report on Patentability for International Application No. PCT/US2021/021041, dated Sep. 15, 2022. |
Number | Date | Country | |
---|---|---|---|
20210276748 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62986038 | Mar 2020 | US |