The invention relates generally to rollers for transporting sheet materials.
Imaging systems such as printers, fax machines, and copiers are virtually omnipresent, and can be found in homes and offices worldwide. The development of such systems has facilitated improvements in communications that have in turn fostered profound changes in the ways that people live and work. Telecommuting, “virtual” offices, and intra-office networks represent but a few examples of the advancements that have been made possible by modern imaging systems.
Most imaging systems use transport mechanisms to move sheets of imaging material through the system. Typical of such arrangements are those using “nip rollers”, in which cylindrical rollers are mounted parallel to one another for rotation in opposite directions. Sheet material is gripped by the rollers in the space between the rollers, the “nip”, where rotation or the rollers causes movement of the sheet. The efficacy and reliability of material transport depends upon a variety of factors, among which are roller surface hardness and “nip spacing”, i.e., the amount of space between the roller surfaces. Optimal roller surface hardness and nip spacing varies with characteristics of the sheet material passing through the system, including sheet thickness and surface characteristics.
Known systems have taken a variety of approaches to nip roller enhancements. For example, U.S. Pat. No. 5,967,512 to Irsik is directed to a nip roller assembly for adjusting the vertical movement of a top nip roller with respect to a bottom nip roller mounted on a machine base, the assembly including a frame attached to the base, the frame including opposing upwardly extending guide legs and a datum member attached to each guide leg and extending therebetween. A support assembly is adjustably mounted on the frame. The support assembly includes a hanger member extending between the guide legs and moveably engaged with each guide leg, a pilot member attached to the hanger member and selectively adjustably attached to the datum member, a cylinder attached to the hanger member, the cylinder having a plunger which is selectively expandable and retractable from the cylinder, and a nip roller bracket for rotatably supporting the nip roller, the bracket being attached to the plunger and extending between the upright guide rods. The bracket movably engages each guide rod to allow movement of the nip roller bracket in conjunction with the rod.
U.S. Pat. No. 6,286,741 to Itoh shows a method of feeding a photosensitive material processing device, includes providing a pair of feed rollers, each in a form of a coaxially-shaped two-layer structure formed by two-layers extrusion molding using thermoplastic resin, wherein the two-layer structure of each of the feed rollers has an internal layer portion and an external layer portion wherein the modulus of elasticity of either the thermoplastic resin constituting the external layer portion or the thermoplastic resin constituting the internal layer portion of the two-layer structure is 240 kgf/mm.sup.2 or more, the modulus of elasticity of the thermoplastic resin constituting the other layer portion is 900 kgf/mm.sup.2 or more, and the external diameter of one of the feed rollers is 13.7 mm or more. The feed rollers are rotatably supported on a processing rack inside a processing tank of the device so that the rollers oppose one another, with a predetermined clearance, and the photosensitive material is directed between the feed rollers, while rotating at least one of the rollers, to convey the photosensitive material inside the processing tank.
Published U.S. patent application Ser. No. 2001/0022428 to Hebert deals with a method and apparatus for holding recording media against a media support surface of an imaging system using an arrangement of variable cross-section vacuum grooves. Each vacuum groove has a continuously decreasing cross-section along its length. Each vacuum groove has a maximum cross-section adjacent a vacuum port and a minimum cross-section at a distal end of the vacuum groove.
While known rollers attempt to address sheet adhesion and roller force, it can be seen from the foregoing that the need exists for a simple, inexpensive, roller structure that provides adjustability in nip spacing and roller force to accommodate a variety of sheet material types.
The present invention is directed to a roller for use in an imaging system including a variable hardness, fluid-pressurizable roller core, and a roller cover surrounding the roller core. A source of pressurized fluid can be used to pressurize the roller core.
An embodiment of a roller 10 in accordance with the principles of the present invention is shown in FIG. 1. The roller 10 includes a roller core 12 surrounded by a roller cover 14. In the illustrated example, both the roller core 12 and the roller cover 14 are substantially annular and cylindrical. The roller cover 14 is constructed from a suitable flexible material, such as foam rubber or plastic. The precise composition of the roller cover material can be selected based upon the desired range of hardnesses for the particular roller application.
The roller core 12 is adapted and constructed to be fluid-pressurizable. As seen in
An alternative construction of a roller 30 in accordance with the principles of the present invention is illustrated in FIG. 3. The roller 30 includes an annular cylindrical roller cover 32 supported on a roller core 34. As with the roller cover 14 described previously, the roller cover 32 is constructed from a suitable flexible material, such as foam rubber or plastic, and the precise composition of the roller cover material can be selected based upon the desired range of hardnesses for the particular roller application.
The roller core 34 includes a central spindle 36 supported between a pair of disc-shaped roller ends 38. Each end of the roller cover 32 is sealed to a respective roller end 38, forming a pressurizable chamber 40. The effective hardness of the outer surface 42 of the roller 30 is determined by the amount of fluid pressure present in the chamber 40, i.e., the effective surface hardness of the roller 30 increases as the pressure in the chamber increases. Pressurized fluid, such as pressurized air, can be introduced into the chamber 40 via an axial conduit 44 and one or more fluid outlets 46 in the spindle 36.
Pressurization of a roller R constructed in accordance with the principles of the present invention is illustrated in
The process described with respect to
Although the present invention has been described with reference to specific embodiments, those of skill in the art will recognize that changes may be made thereto without departing from the scope and spirit of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1058749 | Holder | Apr 1913 | A |
1067607 | Holder | Jul 1913 | A |
1277995 | Musket | Sep 1918 | A |
1314342 | Lawrence | Aug 1919 | A |
1365606 | Seymour-Jones | Jan 1921 | A |
2970339 | Hausman | Feb 1961 | A |
3077293 | Watkins | Feb 1963 | A |
3166013 | Wyllie et al. | Jan 1965 | A |
3253323 | Hans et al. | May 1966 | A |
3378902 | Hoexter | Apr 1968 | A |
3383884 | Meyer | May 1968 | A |
3574912 | Kraft | Apr 1971 | A |
3699621 | Clarke et al. | Oct 1972 | A |
3705449 | Kuesters | Dec 1972 | A |
3707749 | Henley | Jan 1973 | A |
4135677 | Warczak | Jan 1979 | A |
4150622 | Stollenwerk et al. | Apr 1979 | A |
4217821 | Vertegaal et al. | Aug 1980 | A |
4360108 | Logothetis | Nov 1982 | A |
4381709 | Katz | May 1983 | A |
4407199 | Moss | Oct 1983 | A |
4553296 | Eibe | Nov 1985 | A |
4557028 | Eibe | Dec 1985 | A |
4580395 | Castoldi | Apr 1986 | A |
4903597 | Hoage et al. | Feb 1990 | A |
5058497 | Bishop et al. | Oct 1991 | A |
5484370 | Jenke et al. | Jan 1996 | A |
5507228 | Schulz | Apr 1996 | A |
5634606 | Roder | Jun 1997 | A |
5800324 | Schiel | Sep 1998 | A |
5840386 | Hatch et al. | Nov 1998 | A |
6378434 | Gasparrini et al. | Apr 2002 | B1 |
Number | Date | Country |
---|---|---|
196443 | Oct 1986 | EP |
61155154 | Jul 1986 | JP |
03259843 | Nov 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20030234484 A1 | Dec 2003 | US |