Pressurized Tooling for Injection Molding and Method of Using

Abstract
The present invention relates to an apparatus and process for injection molding polymer articles that reduces deposition of additives on the apparatus. Specifically, pressurizing of the mold cavity with a pressurized gas reduces the deposition of low molecular weight additives on the apparatus. Embodiments of the invention also include an apparatus for injection molding polymer articles comprising at least one pressurized gas inlet for introducing a pressurized gas into the mold cavity.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a partial schematic diagram of an apparatus for injection molding polymer articles according to a particular embodiment of the invention.



FIGS. 2A and 2B are elevation views of polymer articles according to particular embodiments of the invention.



FIG. 3 is a schematic diagram of the process for injection molding polymer articles according to a particular embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Injection molding is a technique frequently used for the production of polymer and glass articles. As previously described, conventional injection molding of polymers having high melting and processing temperatures combined with low molecular weight additives results in significant plate-out. Contributing factors to plate-out include the solubility of the low molecular weight compound in the polymer, the volatility of the low molecular weight additive, the transport properties of the polymer, the temperature of the polymer during processing, and the temperature of the molds. These problems are addressed by providing a process and apparatus for injection molding polymer articles that reduces, and in preferred embodiments, minimizes plate-out. Embodiments are described in detail below and are illustrated in FIG. 1-3.


An apparatus 10 for injection molding polymer articles 12, illustrated in FIG. 1, comprises a mold 14 having a mold cavity 16. The mold 14 generally comprises a metal with conventional polished designs on the surfaces of the mold cavity 16. Alternatively, the surfaces of the mold cavity 16 may be textured. The metal should be selected for its thermal conductivity, platings, and resistance to corrosion. Suitable metals are well known to those of ordinary skill in the art.


The mold cavity 16 defines the shape of the polymer articles 12. In one embodiment, the polymer articles 12A comprise container preforms that later are blow molded into hollow containers (FIG. 2A). In another embodiment, the polymer articles 12B comprise hollow containers (FIG. 2B). In either embodiment, the shape of the polymer article 12 (A,B) is comprised of a neck-ring area 18 (A,B) and a body area 20 (A,B). Accordingly, the mold cavity 16 has a corresponding neck-ring area 18 and body area 20. A plurality of polymer articles 12 may be produced using the mold 14 by having a plurality of mold cavities 16 in the mold 14. In one embodiment, the mold 14 comprises between one and 192 mold cavities 16.


The mold 14 (FIG. 1) further comprises a polymer material inlet 22, for introducing the polymer material 24 by injection into the mold cavity 16, and a pressurized gas inlet 26, for introducing a pressurized gas 28 from a source 30 of pressurized gas into the mold cavity 16. The mold 14 may comprise a plurality of polymer material inlets 22 and pressurized gas inlets 26 into the mold cavity 16. Additionally, the polymer material inlet 22 and pressurized gas inlet 26 may be gated or valved to control the flow through the inlet. In one embodiment, the pressurized gas inlet 26 comprises an injector such as a gas injection nozzle.


In one embodiment, the pressurized gas inlet 26 is located in the neck-ring area 18 of the mold cavity 16. Alternatively, the pressurized gas inlet 26 is located in the body area 20 of the mold cavity 16. There may be a plurality of pressurized gas inlets 26 in the neck-ring area 18, body area 20, or any combination of the neck-ring and body areas. In a particular embodiment (not shown), the polymer material inlet 22 and pressurized gas inlet 26 are the same. In another particular embodiment, the polymer material inlet 22 and pressurized gas inlet 26 are different.


In one embodiment, the pressurized gas inlet 26 also functions as a vent. In another particular embodiment, the mold 14 may further comprise a vent (not shown) that is different than the pressurized gas inlet 26.


In a particular embodiment, the source 30 of a pressurized gas 28 comprises a high pressure gas reservoir for storing the pressurized gas 28. In another embodiment, the apparatus 10 further comprises a high pressure gas pump 32 for moving the pressurized gas 28 from the high pressure gas reservoir 30 through the pressurized gas inlet 26 into the mold cavity 16. In still another embodiment, the apparatus 10 further comprises a means 34 for measuring and controlling the pressure in the mold cavity 16. Such means 34 for measuring and controlling pressure are well known in the art. In a particular embodiment, the means 34 for measuring and controlling pressure comprises a pressure gauge or valve. When the apparatus 10 comprises a means 34 for measuring and controlling pressure, the flow of pressurized gas 28 into the mold cavity 16 can be controlled to maintain the pressure in the range from about 1 to about 1000 psig, from about 2 to about 750 psig, or from about 3 to about 500 psig.


In a particular embodiment, a means 34 for measuring and controlling pressure permits manipulation of the pressure profile being applied to the advancing melt front as the mold cavity 16 fills with the pressurized gas 28. In another particular embodiment wherein the apparatus 10 comprises a plurality of mold cavities 16, the means 34 for measuring and controlling pressure permits control of the pressure in the individual mold cavities 16 to compensate for variations in the melt delivery system.


The pressurized gas 28 may comprise any gas that does not detrimentally affect the polymer material 24 of the polymer article 12. In an embodiment, the pressurized gas 28 is a gas at room temperature. In a particular embodiment, the pressurized gas 28 comprises any non-reactive gases, non-limiting examples of which include air or any of its components, including oxygen, nitrogen, carbon dioxide, and mixtures thereof. In another particular embodiment, the pressurized gas 28 comprises any of the noble gases, including argon, neon, helium, xenon, and mixtures thereof.


The pressurized gas 28 also may be supplied to the mold cavity 16 by an alternate means (i.e., not requiring a pressurized gas reservoir 30 or pressurized gas pump 32). For example, the mold cavity 16 may be pressurized by the vaporization of a liquid to form a pressurized gas in the mold cavity in situ during the injection molding process. In such instances, the liquid present in the mold cavity would evaporate when exposed to the heat of the polymer melt front, creating a cushion of gas against the advancing melt front as the liquid is displaced by the gas. Non-limiting examples of such liquids include water, alcohol, or any non-reactive, non-plating volatile organic compounds capable of pressurizing the mold cavity in situ during the injection molding process. In another particular embodiment, the mold cavity 16 may be pressurized by a liquid which does not interact with the injection process. For example, the mold cavity 16 could be filled with a liquid followed by application of a hydrostatic pressure.


Another example of alternate means by which the pressurized gas 28 may be supplied to the mold cavity 16 is through a chemical reaction that generates a pressurized gas 28. In a particular embodiment, a foaming agent is introduced into the mold cavity 16 to produce the pressurized gas 28. In another embodiment, the pressurized gas 28 may be premixed into the polymer material 24, wherein the pressurized gas 28 diffuses through the polymer material to pressurize the mold cavity 16 during the injection molding process, thereby reducing plate-out. In still another embodiment, the pressurized gas 28 may be introduced into the mold cavity 16 at the same time as the polymer material 24.


The mold 14 may further comprise a means for measuring and controlling the tooling temperature (not shown). For example, a means for measuring and controlling the tooling temperature could maintain the mold temperature at a warmer temperature, thereby reducing the tendency to plate-out; the tooling temperature could be varied across the mold 14 by elevating the mold temperature at locations in proximity to where plate-out occurs while maintaining optimal molding temperatures throughout the remainder of the mold; or temperature heating and cooling strategies could be developed which allow for the tooling to run at elevated temperatures during filling but rapidly cool during the cooling portion of the injection cycle.


In another particular embodiment, the apparatus 10 comprises a means for reducing the melt temperature (not shown), thereby reducing plate-out. For example, vibrating a melt has been shown to lower the melt temperature. Alternatively, the valve gate, where there is rapid heating of the melt, may be modified to reduce the melt temperature.


The polymer material 24 comprises a polymer matrix and a low molecular weight additive. The polymer matrix may comprise any polymer with a melting or processing temperature in excess of 100° C. Non-limiting examples include polyesters, polyamides, polyolefins, polylactides, and polyimides. In a particular embodiment, the polymer matrix comprises the thermoplastic polymer polyethylene terephthalate (PET). The low molecular weight additive may comprise any organic or inorganic material with a molecular weight below about 2000 daltons, below about 1500 daltons, or below about 1000 daltons. In a particular embodiment, the low molecular weight additive comprises a purine derivative, as disclosed in the co-pending non-provisional patent application Ser. No. 11/532,361 filed on Sep. 15, 2006, entitled “Container and Composition for Enhanced Gas Barrier Properties,” which claims priority to the provisional patent application 60/723,751 filed on Oct. 15, 2005, by inventor's Yu Shi, et al. These patent applications are hereby incorporated by reference in their entirety. Non-limiting examples of purine derivatives include caffeine, theophylline, and theobromine.


Optionally, the polymer container may comprise a plurality of layers as described in co-pending patent application No. 60/825,861 filed on Sep. 15, 2006, entitled “Multilayer Container For Enhanced Gas Barrier Properties,” the disclosure of which is expressly incorporated herein by reference in its entirety. A multilayer container can permit the use of additives in a barrier layer that normally would be too volatile for inclusion in a single layer container because the low molecular weight additive is contained between two outer layers without the low molecular weight additive, preventing contact between the low molecular weight additive and the surfaces of the injection molding apparatus. Accordingly, a multilayer container would further reduce the occurrence of plate-out during the injection molding process.


Briefly described, a multilayer container comprises at least two outer layers comprising a polymer matrix and at least one barrier layer disposed between the at least two outer layers. The at least one barrier layer comprises a polyester composition comprising a polyester and an enhanced gas barrier additive comprising a purine derivative. Desirably, the low molecular weight additive is present in the multilayer container in an amount in the range of about 0.2 to about 10 weight percent of the container, the at least two outer layers comprise about 99 to about 20 weight percent of the container, and the one or more barrier layers comprise about 1 to about 80 weight percent of the container. In another particular embodiment, the multilayer container further comprises at least one intermediate layer between the at least one barrier layer and the at least two outer layers. Equipment and methods for making such multilayer containers are well known to those of ordinary skill in the art. For example, the plurality of layers could be co-extruded using a modified configuration of the pressurized injection molding apparatus described herein.


The present invention also encompasses a process for the injection molding of polymer articles 12. As previously discussed, an individual or a plurality of polymer articles 12 may be made by varying the number of mold cavities 16 in the mold 14 of the apparatus 10. In the discussion herein, references to an individual mold cavity 16 also shall encompass molds 14 comprising a plurality of mold cavities 16.


Typically, the process of injection molding 36 (FIG. 3) comprises the steps of introducing 38 a polymer material 24 into the mold cavity 16, cooling 40 the polymer material 24, and removing 42 the polymer article 12 from the mold cavity 16. The injection molding process 36 embodied herein further comprises the step of pressurizing 44 the mold cavity 16 by introducing a pressurized gas 28 into the mold cavity 16 before, or at the same time as, the step of introducing 38 a polymer material 24 into the mold cavity 16. The pressurized gas 28 may be introduced into the mold cavity 16 through an individual or a plurality of pressurized gas inlets 26. Alternatively, the pressurized gas 28 may be introduced into the mold cavity 16 by reacting materials together to produce the pressurized gas 28; by premixing the pressurized gas 28 into the polymer material 24 such that it diffuses through the polymer material; by co-injecting the pressurized gas 28 and polymer material 24 into the mold cavity 16; by introducing a foaming agent into the mold cavity 16; or by introducing a volatile compound into the mold cavity 16.


In another embodiment, the process 36 further comprises measuring and controlling 46 the pressure of the mold cavity 16. Specifically, the flow of the pressurized gas 28 into the mold cavity 16 is controlled such that the pressure of the mold cavity 16 is maintained in the range from about 1 to about 1000 psig. In still another embodiment, the process is carried out at an operating temperature in the range of about 0 to about 350° C.


The additional step of pressurizing 44 the mold cavity 16 changes the dynamics of the processing cycle by reducing or completely eliminating the ability of additives, such as low molecular weight additives, to diffuse through the polymer material 24 and deposit on the inner surfaces of the mold 14. The desired pressure of the mold cavity 16 can be optimized for a particular polymer material 24, polymer matrix, or additive.


Not wishing to be bound by any theory, it is believed that the hydrostatic pressure applied to the melt holds the additive in solution in the liquid media. As the melt is allowed to depressurize when entering a mold cavity at ambient pressure conditions, the dissolved additive sublimes from the surface of the advancing melt front, resulting in deposition of the material on the tooling and functional vents. By applying pressure to a portion of the mold during the filling time, the level of deposits are reduced significantly. It is believed that designs allowing for the application of pressure during the entire filling cycle may eliminate the problems associated with plate-out entirely. Simply immersing the entire mold in a pressurized media or the entire machine in a hyperpressurized environment would prevent the sublimation process to initiate; however, it also is believed that the rapid pressurization and flow of pressurized fluid out of the perform cavity assist in the purging of deposits. Accordingly, the tooling could be purged with water vapor, jets, or combinations thereof to remove water soluble deposits.


The present invention is further illustrated by the following example, which is not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof which, after reading the description therein, may suggestion themselves to those skilled in the art without departing from the spirit of the present invention and/or the scope of the appended claims.


COMPARATIVE EXAMPLE

A mixture of a PET resin and the low molecular weight additive caffeine (comprising 3 weight percent of the PET mixture) was introduced into a Husky® injection molding machine. The polymer material was injected into a mold having six mold cavities. Each mold cavity was pressurized to 300 psi with air. The injection molding process proceeded as normal, producing six container preforms at a time. The exposed tooling surfaces of the machine were inspected visually after each ejection cycle. Pressurizing the mold cavities enabled the machine to run approximately 24 to 26 hours before significant plate-out was observed that resulted in a significant loss of product quality.


The same polymer material (PET and 3 weight percent caffeine) also was made without the step of pressurizing the mold cavities. Without pressurizing the mold cavities, the machine only ran approximately one to two hours before significant plate-out was observed that resulted in significant loss of product quality. Thus, pressurizing of the mold cavities allowed for significantly longer processing runs by reducing plate-out.


It should be apparent that the foregoing relates only to particular embodiments of the present invention, and that numerous changes and modifications may be made therein without departing from the scope of the invention as defined by the following claims and equivalents thereof.

Claims
  • 1. A process for injection molding polymer articles comprising the steps of: pressurizing a mold by introducing a pressurized gas into at least one mold cavity in the mold, wherein the at least one mold cavity defines a shape of a polymer article;introducing a polymer material into the at least one mold cavity;cooling the polymer material; andremoving at least one of the polymer articles from the at least one mold cavity.
  • 2. The process of claim 1, wherein the polymer material comprises a polymer matrix and a low molecular weight additive.
  • 3. The process of claim 2, wherein the polymer matrix comprises a thermoplastic polymer.
  • 4. The process of claim 2, wherein the polymer matrix comprises polyester, polyamide, polyolefin, polyimide, polylactide, or derivatives thereof.
  • 5. The process of claim 2, wherein the polymer matrix comprises polyethylene terephthalate.
  • 6. The process of claim 2, wherein the low molecular weight additive comprises a compound with a molecular weight below about 2000 daltons.
  • 7. The process of claim 2, wherein the low molecular weight additive comprises a compound with a molecular weight below about 1500 daltons.
  • 8. The process of claim 2, wherein the low molecular weight additive comprises a compound with a molecular weight below about 1000 daltons.
  • 9. The process of claim 2, wherein the low molecular weight additive comprises a purine derivative.
  • 10. The process of claim 9, wherein the purine derivative comprises a purine dione.
  • 11. The process of claim 10, wherein the purine dione comprises caffeine, theophylline, theobromine, or mixtures thereof.
  • 12. The process of claim 1, wherein the pressurized gas comprises air, nitrogen, oxygen, carbon dioxide, argon, neon, helium, xenon, or mixtures thereof.
  • 13. The process of claim 1, wherein the polymer article comprises a container preform.
  • 14. The process of claim 1, wherein the polymer article comprises a hollow container.
  • 15. The process of claim 1, wherein the shape of the polymer article comprises a neck-ring area and a body area.
  • 16. The process of claim 15, wherein the pressurized gas is introduced into at least one location in the neck-ring area of the at least one mold cavity.
  • 17. The process of claim 15, wherein the pressurized gas is introduced into at least one location in the body area of the at least one mold cavity.
  • 18. The process of claim 15, wherein the pressurized gas is introduced into at least one location in the neck-ring area and at least one location in the body area of the at least one mold cavity.
  • 19. The process of claim 1, wherein the pressurized gas and polymer material are introduced into the at least one mold cavity through the same inlet.
  • 20. The process of claim 1, wherein the pressurized gas and polymer material are introduced into the at least one mold cavity through different inlets.
  • 21. The process of claim 1, wherein the pressurized gas is introduced into the at least one mold cavity by generating a gas from a chemical reaction.
  • 22. The process of claim 1, wherein the pressurized gas is introduced by a gas generating material introduced into the at least one mold cavity.
  • 23. The process of claim 1, wherein the pressurized gas is introduced by vaporization of a liquid capable of generating a pressurized gas, wherein the liquid comprises water, alcohol, or non-reacting and non-plating volatile organic compounds.
  • 24. The process of claim 1, wherein the pressurized gas is introduced into the at least one mold cavity prior to the polymer material.
  • 25. The process of claim 1, wherein the pressurized gas is introduced into the at least one mold cavity at the same time as the polymer material.
  • 26. The process of claim 25, wherein the pressurized gas is premixed with the polymer material.
  • 27. The process of claim 1, further comprising the step of monitoring pressure in the at least one mold cavity.
  • 28. The process of claim 27, wherein the pressure is in the range of about 1 to about 1000 psig.
  • 29. An apparatus for injection molding polymer articles comprising: a mold havingat least one mold cavity defining a shape of a polymer article;a polymer material inlet for introducing a polymer material into the at least one mold cavity; andat least one pressurized gas inlet for introducing a pressurized gas into the at least one mold cavity.
  • 30. The apparatus of claim 29, further comprising an injector for introducing the polymer material into the at least one mold cavity through the polymer material inlet.
  • 31. The apparatus of claim 29, wherein the polymer article comprises a container preform.
  • 32. The apparatus of claim 29, wherein the polymer article comprises a hollow container.
  • 33. The apparatus of claim 29, wherein the shape of the polymer article comprises a neck-ring area and a body area.
  • 34. The apparatus of claim 29, wherein the at least one pressurized gas inlet comprises a gas injection nozzle.
  • 35. The apparatus of claim 29, further comprising a high pressure gas reservoir for storing the pressurized gas.
  • 36. The apparatus of claim 35, further comprising a high pressure gas pump for moving the pressurized gas from the high pressure gas reservoir through the at least one pressurized gas inlet into the at least one mold cavity.
  • 37. The apparatus of claim 29, further comprising a pressure gauge for measuring pressure in the at least one mold cavity.
  • 38. The apparatus of claim 33, wherein the at least one pressurized gas inlet is located in the neck-ring area of the at least one mold cavity.
  • 39. The apparatus of claim 33, wherein the at least one pressurized gas inlet is located in the body area of the at least one mold cavity.
  • 40. The apparatus of claim 33, wherein the at least one pressurized gas inlet is located in the neck-ring area and body area of the at least one mold cavity.
  • 41. The apparatus of claim 29, wherein the polymer material inlet and at least one pressurized gas inlet are the same.
  • 42. The apparatus of claim 29, wherein the polymer material inlet and at least one pressurized gas inlet are different.
  • 43. The apparatus of claim 29, wherein the pressurized gas comprises air, nitrogen, oxygen, carbon dioxide, argon, neon, helium, xenon, or mixtures thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/825,844, entitled “Pressurized Tooling for Injection Molding and Method of Using,” filed on Sep. 15, 2006, which is hereby incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
60825844 Sep 2006 US