The following relates to the nuclear reactor arts, nuclear power generation arts, nuclear reactor hydrodynamic design arts, and related arts.
In nuclear reactor designs of the pressurized water reactor (PWR) type, a radioactive nuclear reactor core is immersed in primary coolant water at or near the bottom of a pressure vessel. The primary coolant is maintained in a compressed or subcooled liquid phase. In applications in which steam generation is desired, the primary coolant water is flowed out of the pressure vessel, into an external steam generator where it heats secondary coolant water flowing in a separate secondary coolant path, and back into the pressure vessel. Alternatively an internal steam generator is located inside the pressure vessel (sometimes called an “integral PWR” design), and the secondary coolant is flowed into the pressure vessel within a separate secondary coolant path in the internal steam generator. In either design, heated primary coolant water heats secondary coolant water in the steam generator to convert the secondary coolant water into steam. An advantage of the PWR design is that the steam comprises secondary coolant water that is not exposed to the radioactive reactor core.
In a typical PWR design configuration, the primary coolant flow circuit is defined by a cylindrical pressure vessel that is mounted generally upright (that is, with its cylinder axis oriented vertically). A hollow cylindrical central riser is disposed concentrically inside the pressure vessel. Primary coolant flows upward through the reactor core where it is heated and rises through the central riser, discharges from the top of the central riser and reverses direction to flow downward back toward the reactor core through a downcomer annulus defined between the pressure vessel and the central riser. This is a natural convection flow circuit that can, in principle, be driven by heat injection from the reactor core and cooling of the primary coolant as it flows upward and away from the reactor core. However, for higher power reactors it is advantageous or even necessary to supplement or supplant the natural convection with motive force provided by electromechanical reactor coolant pumps.
Most commercial PWR systems employ external steam generators. In such systems, the primary coolant water is pumped by an external pump connected with external piping running between the PWR pressure vessel and the external steam generator. This also provides motive force for circulating the primary coolant water within the pressure vessel, since the pumps drive the entire primary coolant flow circuit including the portion within the pressure vessel.
Fewer commercial “integral” PWR systems employing an internal steam generator have been produced. One contemplated approach is to adapt a reactor coolant pump of the type used in a boiling water reactor (BWR) for use in the integral PWR. Such arrangements have the advantages of good heat management (because the pump motor is located externally) and maintenance convenience (because the externally located pump is readily removed for repair or replacement).
However, the coupling of the external reactor coolant pump with the interior of the pressure vessel introduces vessel penetrations that, at least potentially, can be the location of a loss of coolant accident (LOCA).
Another disadvantage of existing reactor coolant pumps is that the pump operates in an inefficient fashion. Effective primary coolant circulation in a PWR calls for a pump providing high flow volume with a relatively low pressure head (i.e., pressure difference between pump inlet and outlet). In contrast, most reactor coolant pumps operate most efficiently at a substantially higher pressure head than that existing in the primary coolant flow circuit, and provide an undesirably low pumped flow volume.
Yet another disadvantage of existing reactor coolant pumps is that natural primary coolant circulation is disrupted as the primary coolant path is diverted to the external reactor coolant pumps. This can be problematic for emergency core cooling systems (EGGS) that rely upon natural circulation of the primary coolant to provide passive core cooling in the event of a failure of the reactor coolant pumps.
Another contemplated approach is to employ self-contained internal reactor coolant pumps in which the pump motor is located with the impeller inside the pressure vessel. However, in this arrangement the pump motors must be designed to operate inside the pressure vessel, which is a difficult high temperature and possibly caustic environment (e.g., the primary coolant may include dissolved boric acid). Electrical penetrations into the pressure vessel are introduced in order to operate the internal pumps. Pump maintenance is complicated by the internal placement of the pumps, and maintenance concerns are amplified by an anticipated increase in pump motor failure rates due to the difficult environment inside the pressure vessel. Still further, the internal pumps occupy valuable space inside the pressure vessel.
Disclosed herein are improvements that provide various benefits that will become apparent to the skilled artisan upon reading the following.
In one aspect of the disclosure, an apparatus comprises a reactor coolant pump (RCP) configured to pump primary coolant water in a pressurized water reactor (PWR) comprising a pressure vessel containing a nuclear core comprising a fissile material immersed in primary coolant water. The RCP includes: a turbo pump comprising (i) an impeller arranged in the pressure vessel to circulate primary coolant through the pressure vessel and (ii) a turbine mechanically coupled with the impeller to drive the impeller; and an electrically driven hydraulic pump configured to pump primary coolant from the pressure vessel into the turbine to drive the turbo pump. In some embodiments, an inlet of the turbine is connected with the hydraulic pump to receive primary coolant pumped into the turbine to drive the turbo pump, but an outlet of the turbine is not connected with the hydraulic pump.
In another aspect of the disclosure, a method comprises: providing a pressurized water reactor (PWR) comprising a pressure vessel containing a nuclear core comprising a fissile material immersed in primary coolant water; pumping primary coolant using an electrically driven hydraulic pump to generate first primary coolant flow; and transforming the first primary coolant flow into second primary coolant flow circulating inside the pressure vessel, the second primary coolant flow having lower pressure and higher volume than the first primary coolant flow. In some embodiments the transforming comprises driving a hydraulically driven pump using the first primary coolant flow. For example, the hydraulically driven pump may be a turbo pump and the driving comprises driving a turbine of the turbo pump using the first primary coolant flow to rotate an impeller of the turbo pump to generate the second primary coolant flow.
In another aspect of the disclosure, an apparatus comprises: a pressurized water reactor (PWR) comprising a pressure vessel containing a nuclear core comprising a fissile material immersed in primary coolant water; and a reactor coolant pump configured to pump primary coolant water in the pressure vessel, the reactor coolant pump comprising a hydraulically driven turbo pump disposed in the pressure vessel. In some embodiments the turbo pump comprises an impeller performing pumping of primary coolant water in the pressure vessel, and a hydraulically driven turbine mechanically coupled with the impeller to drive the impeller.
The invention may take form in various components and arrangements of components, and in various process operations and arrangements of process operations. The drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting the invention.
With reference to
Selected components of the PWR that are internal to the pressure vessel 12 are shown diagrammatically in phantom (that is, by dotted lines). A nuclear reactor core 14 is disposed in a lower portion of the pressure vessel 12. The reactor core 14 includes a mass of fissile material, such as a material containing uranium oxide (UO2) that is enriched in the fissile 235U isotope, in a suitable matrix material. In a typical configuration, the fissile material is arranged as “fuel rods” arranged in a core basket. The pressure vessel 12 contains primary coolant water (typically light water, that is, H2O, although heavy water, that is, D2O, is also contemplated) in a subcooled state.
A control rods system 16 is mounted above the reactor core 14 and includes control rod drive mechanism (CRDM) units and control rod guide structures configured to precisely and controllably insert or withdraw control rods into or out of the reactor core 14. The illustrative control rods system 16 employs internal CRDM units that are disposed inside the pressure vessel 12. Some illustrative examples of suitable internal CRDM designs include: Stambaugh et al., “Control Rod Drive Mechanism for Nuclear Reactor”, U.S. Pub. No. 2010/0316177 A1 published Dec. 16, 2010 which is incorporated herein by reference in its entirety; and Stambaugh et al., “Control Rod Drive Mechanism for Nuclear Reactor”, Intl Pub. WO 2010/144563 A1 published Dec. 16, 2010 which is incorporated herein by reference in its entirety. In general, the control rods contain neutron absorbing material, and reactivity is increased by withdrawing the control rods or decreased by inserting the control rods. So-called “gray” control rods are continuously adjustable to provide incremental adjustments of the reactivity. So-called “shutdown” control rods are designed to be inserted as quickly as feasible into the reactor core to shut down the nuclear reaction in the event of an emergency. Various hybrid control rod designs are also known. For example, a gray rod may include a mechanism for releasing the control rod in an emergency so that it falls into the reactor core 14 thus implementing a shutdown rod functionality. Internal CRDM designs have advantages in terms of compactness and reduction in mechanical penetrations of the pressure vessel 12; however, it is also contemplated to employ a control rods system including external CRDM located outside of (e.g., above) the pressure vessel and operatively connected with the control rods by connecting rods that pass through suitable mechanical penetrations into the pressure vessel.
The illustrative PWR 10 is an integral PWR, and includes an internal steam generator 18 disposed inside the pressure vessel 12. In the illustrative configuration, a central riser 20 is a cylindrical element disposed coaxially inside the cylindrical pressure vessel 12. (Again, the term “cylindrical” is intended to encompass generally cylindrical risers that deviate from a perfect cylinder by variations in diameter along the cylinder axis, inclusion of selected openings, or so forth). The riser 20 surrounds the control rods system 16 and extends upward, such that primary coolant water heated by the operating nuclear reactor core 14 rises upward through the central riser 20 toward the top of the pressure vessel, where it discharges, reverses flow direction and flows downward through an outer annulus defined between the central riser 20 and the cylindrical wall of the pressure vessel 12. The illustrative steam generator 18 is an annular steam generator disposed in a downcomer annulus 22 defined between the central riser 20 and the wall of the pressure vessel 12. The steam generator 18 provides independent but proximate flow paths for downwardly flowing primary coolant and upwardly flowing secondary coolant. The secondary coolant enters at a feedwater inlet 24, flows upward through the steam generator 18 where it is heated by the proximate downwardly flowing primary coolant to be converted to steam, and the steam discharges at a steam outlet 26.
The pressure vessel 12 defines a sealed volume that, when the PWR is operational, contains primary coolant water in a subcooled state. Toward this end, the PWR includes an internal pressurizer volume 30 disposed at the top of the pressure vessel 12 containing a steam bubble whose pressure controls the pressure of the primary coolant water in the pressure vessel 12. The pressure is controlled by suitable devices such as a heater 32 (e.g., one or more resistive heaters) that heats the steam to increase pressure, and/or a sparger 34 that injects cool water or steam into the steam bubble to reduce pressure. A baffle plate 36 separates the internal pressurizer volume 30 from the remainder of the sealed volume of the pressure vessel 10. By way of illustrative example, in some embodiments the primary coolant pressure in the sealed volume of the pressure vessel 12 is at a pressure of about 2000 psia and at a temperature of about 300° C. (cold leg just prior to flowing into the reactor core 14) to 320° C. (hot leg just after discharge from the reactor core 14). These are merely illustrative subcooled conditions, and a diverse range of other operating pressures and temperatures are also contemplated. Moreover, the illustrative internal pressurizer can be replaced by an external pressurizer connected with the pressure vessel by suitable piping or other fluid connections.
A reactor coolant pump (RCP) 40 is configured to drive circulation of primary coolant water in the pressure vessel 12. The reactor coolant pump comprises a hydraulically driven turbo pump 41 disposed in the pressure vessel. In a suitable embodiment, the turbo pump 41 includes an impeller 42 performing pumping of primary coolant water in the pressure vessel 12, and a hydraulically driven turbine 44 mechanically coupled with the impeller 42 to drive the impeller 42. A hydraulic pump 46 pumps primary coolant water to generate hydraulic working fluid that drives the turbine 42.
With reference to
With reference to
The turbine rotor 54 is mounted on a shaft 60, and the impeller 42 mounted on the same shaft 60 as the turbine rotor 54—therefore, the impeller 42 rotates in same the rotational direction R as the turbine rotor 54. More generally, the hydraulically driven turbine 44 is mechanically coupled with the impeller 42 to drive the impeller 42. In the illustrative approach this mechanical coupling is via the common shaft 60; however, it is also contemplated to include a more complex coupling with gearing or so forth. The illustrative shaft 60 is supported in the turbine housing 52 by suitable bearings B1, B2.
The blades of the impeller 42 are immersed in the primary coolant, and are shaped such that they drive a primary coolant flow P as shown in
The impeller 42 directs the primary coolant flow P across the turbine housing 52 in the same general direction as the turbine exhaust WE discharged from the outlet 56 by the turbine 44. Thus, the turbine exhaust flow WE additively combines with the primary coolant flow P to form the total discharge from the turbo pump. This is advantageous assuming that the electrically driven hydraulic pump 46 supplies the hydraulic working fluid W as primary coolant and/or as make-up water for making up lost primary coolant. In this arrangement, there is a single fluid connection, namely the inlet 50, connecting (via a connecting apparatus 50a in some embodiments), the electrically driven hydraulic pump 46 and the turbo pump 41 (or, more specifically, a single fluid connection 50 connecting the hydraulic pump 46 and the turbine 44). In particular, the outlet 56 is not connected with the hydraulic pump 46.
With reference to
The illustrative electrically driven hydraulic pumps 46 are external canned motor pumps that feed the inlets 50 of two turbines 44 with relatively short hydraulic lines that are internal to the pressure vessel 12. The canned motor pumps are suitably mounted on respective flanged openings in the pressure vessel 12. In these embodiments a canned motor pump housing 76 of the pump 46 is part of the primary pressure boundary also including the pressure vessel 12. In these canned pump designs, there is no seal between the shaft 78 of the working fluid pump 80 and the motor (comprising a stator 82 and a rotor 84). The internals of the electrically driven hydraulic pump 46 are wet at the primary pressure. This type of pump is known for use as boiler circulation pumps. The canned motor pump external housing 76 is effectively an extension of the reactor vessel primary boundary defined by the pressure vessel 12.
In operation, a portion of the primary coolant flow P flowing downward in the downcomer annulus 22 is captured by an inlet 90 and flows into the electrically driven hydraulic pump 46. This captured primary coolant forms the hydraulic working fluid W, and is pressurized by operation of the hydraulic pump 46 (and more particularly by the operation of the working fluid pump 80 driven by the motor 82, 84). The pump 80 discharges the working fluid W into the inlet 50 of the turbine 44 where it drives the turbine rotor 54 (see
With particular reference to
In the illustrative embodiment in which the electrically driven hydraulic pumps 46 are canned pumps, the pumps 46 are expected to receive a substantial amount of heat from the reactor. Accordingly, in some embodiments provision is made for cooling the electrically driven hydraulic pumps 46. In one embodiment, a heat exchanger (not shown) is employed for this purpose. The “hot” side of the heat exchanger flows fluid from inside the pump 46, while the “cold” side of the heat exchanger is cooled by active flow of coolant delivered via coolant lines 94.
The RCP embodiments described with reference to
The embodiments of
With reference to
The design of
With reference to
In the alternative embodiment of
In this configuration, the turbo-pumps 41 are mounted inverted (as compared with the embodiment of
In the alternative embodiments of
In the alternative embodiment of
The preferred embodiments have been illustrated and described. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims the benefit of U.S. Provisional Application No. 61/624,942 filed Apr. 16, 2012 and titled “PRESSURIZED WATER REACTOR WITH REACTOR COOLANT PUMPS COMPRISING TURBO PUMPS DRIVEN BY EXTERNAL PUMPS”. U.S. Provisional Application No. 61/624,942 filed Apr. 16, 2012 titled “PRESSURIZED WATER REACTOR WITH REACTOR COOLANT PUMPS COMPRISING TURBO PUMPS DRIVEN BY EXTERNAL PUMPS” is hereby incorporated by reference in its entirety into the specification of this application. This application claims the benefit of U.S. Provisional Application No. 61/624,966 filed Apr. 16, 2012 and titled “COOLANT PUMP APPARATUSES AND METHODS OF USE FOR SMRS”. U.S. Provisional Application No. 61/624,966 filed Apr. 16, 2012 and titled “COOLANT PUMP APPARATUSES AND METHODS OF USE FOR SMRS” is hereby incorporated by reference in its entirety into the specification of this application.
Number | Date | Country | |
---|---|---|---|
61624942 | Apr 2012 | US | |
61624966 | Apr 2012 | US |