Exemplary embodiments of the present invention are explained in detail below with reference to the accompanying drawings.
Operations of the image forming apparatus 10 for forming an image are explained below with reference to
The developing unit 4 develops the electrostatic latent image on the surface of the photoreceptor 1 into a toner image with toner. With the rotation of the photoreceptor 1, the toner image is conveyed to the transfer unit 5 that is arranged to be opposed to the photoreceptor 1.
Meanwhile, the sheet P stored in the sheet tray 7 is fed to a nip portion between the photoreceptor 1 and the transfer unit 5. The transfer unit 5 transfers the toner image from the surface of the photoreceptor 1 to the sheet P. The sheet P with the toner image thereon is conveyed to the fixing device 6, and the fixing device 6 fixes the toner image. In this manner, a desired image is obtained.
After the transfer of the toner image to the sheet P, the cleaner 8 cleans a material, such as toner, adhered on the surface of the photoreceptor 1. The removing unit 9 removes the residual static electricity residing on the surface of the photoreceptor 1. In this manner, one cycle of the operations for forming an image is completed.
A recording medium 32 with unfixed toner 31 on its surface is conveyed in the direction indicated by an arrow shown in
The pressurizing unit 40 includes a pressurizing member 21, a supporting member 22 that supports the pressurizing member 21, a pressing spring 11, an endless member 23, a friction-reducing member 25, and guiding members 24. The pressing spring 11 presses the pressurizing member 21 and the supporting member 22 against the recording medium 32. The endless member 23 is driven to rotate. The friction-reducing member 25 reduces friction between the endless member 23 and the pressurizing member 21. The guiding members 24 define a path of the endless member 23.
The pressurizing unit 40 also includes a lubricant-supplying member 27 that supplies a lubricant for further reducing friction between the endless member 23 and the pressurizing member 21. As the lubricant, one containing silicone oil or fluorine oil is generally used.
A fixed image 33 is obtained after the recording medium 32 passes through a nip portion formed between the heating-fixing roller 1′ and the endless member 23. As the surface-covering layer 2′, for example, a tetrafluoroethylene perfluoroalkoxy vinyl ether copolymer (PFA) layer is used to inhibit the unfixed toner 31 from adhering to the heating-fixing roller 1′. As the elastic layer 3′, for example, silicone rubber or fluororubber is generally used. When silicone rubber is used, the elastic layer 3′ may be coated with, for example, a fluorine layer or the like to improve swelling resistance.
The endless member 23 is made of PFA and polyimide. As the pressurizing member 21 is used a pressurizing pad with a flat surface in a pressurizing direction. The pressurizing member 21 includes a rubber layer formed of silicone rubber or fluorine rubber. The recording medium 32 can be any type of recording medium such as a cut sheet.
In the fixing device 60, the heating rollers 7′ serve as driving sources and directly drive the endless heating member 5′. Alternatively, the endless heating member 5′ can be driven via a driven roller without heat source. The use of the endless heating member 5′ instead of the heating-fixing roller 1′ allows adjustment of the width of a nip and the deformation of the endless heating member 5′ at the nip exit with little change in the size of the fixing device 60. In this case, the width of the pressurizing member 21 needs to be equal to or smaller than the width of the heating member 8′.
Tests performed in the embodiment are explained below. In the tests, the fixing device including the pressurizing member having an elastic (rubber) layer with a hardness of 8 Hs (JIS-A), a permanent deformation of 4%, and a thickness of 4 mm in a direction of load applied thereto (hereinafter, load application direction) was examined. The tests proved that a recording medium was easily separated from the fixing roller (i.e., the sheet releasability was improved) when the thickness in the load application direction is changed to 2 mm. If the permanent deformation of the elastic layer of the heating-fixing roller is large, the surface of the heating-fixing roller may locally deform, and image deterioration, such as uneven gloss of an image, may be caused. It was found that a permanent deformation equal to or more than 5% increased the amount of uneven gloss of an image. Thus, a permanent deformation equal to or less than 4% is desirable. Based on the idea that a large clearance between the surface of the heating-fixing roller and the surface of a sheet passing through the nip exit improves the sheet releasability, it can be understood that the outer diameter of the heating-fixing roller is a parameter for defining the clearance. It was found that an outer diameter φ of more than 28 mm lowered the sheet releasability. Hence, it is desirable that the heating-fixing roller have an outer diameter φ equal to or less than 28 mm. The thickness of the elastic layer of the heating-fixing roller is also a parameter for defining the clearance. It was found that a thickness of the elastic layer of less than 0.8 mm lowered the sheet releasability. This is because a small thickness of the elastic layer leads to a small amount of deformation of the elastic layer, so that a recording medium cannot be in an appropriate state at the nip exit. For this reason, it is desirable that the elastic layer have a thickness equal to or more than 0.8 mm. The hardness of the elastic layer of the heating-fixing roller is also a parameter for defining the clearance. It was found that the hardness of the elastic layer of more than 8 Hs (JIS-A) lowered the sheet releasability. The sheet releasability is lowered because a high hardness of the elastic layer leads to a small amount of the deformation of the elastic layer, so that a recording medium cannot be in an appropriate state at the nip exit. For this reason, it is desirable that the elastic layer have a hardness equal to or less than 8 Hs (JIS-A). A large permanent deformation of the pressuring member may cause a temporal change of the nip shape, so that the fixing characteristics of toner to a recording medium and the sheet releasability may be unstable. The test results indicated that a permanent deformation equal to or more than 5% lowered the sheet releasability after the heating-fixing roller was heated and idly rotated for 100 hours or more. For this reason, it is desirable that the pressurizing member have a permanent deformation of equal to or less than 4%.
As shown in
According to the embodiment, the direction in which the biasing member 104 presses the holding member 101 is the same as the direction in which the holding member 101 presses the pressure-contact member 106. Therefore, it is possible to create sufficient nip pressure between the heating-fixing roller 1′ and the endless member 23 shown in
Because the biasing member 104 is in contact with the holding member 101 in a larger area, the direction in which the biasing member 104 presses the holding member 101 is prevented from changing, so that variation of the pressure can be suppressed. With the recesses 102 or protrusions, the holding member 101 can be brought in close contact with the biasing member 104, resulting in still less variation in the pressure. Because the biasing member 104 directly presses the holding member 101, the stationary member 100 can be prevented from being damaged.
The stationary member 100 and the holding member 101 both have contact surfaces by which they contact with each other when engaged. Therefore, the position of the biasing member 104 is prevented from moving, and the endless member 103 is prevented from deviating in a horizontal direction. Thus, a stable nip portion can be formed. In addition, it is possible to prevent the inclination of the holding member 101 due to the accuracy error of the surface of the stationary member 100.
Because the portion C of the stationary member 100 is used to release the pressure at the nip portion, an additional member for releasing the pressure is unnecessary, reducing the size of the fixing device. In addition to the function of preventing the endless member 103 from deviating in the horizontal direction, the stationary member 100 releases the pressure, further reducing the size of the fixing device.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2006-234977 | Aug 2006 | JP | national |