The disclosure relates to an electrophotographic image forming apparatus for forming an image on a recording medium in an electrophotographic manner, and a development cartridge capable of being detachably attached to the electrophotographic image forming apparatus.
An electrophotographic image forming apparatus operating in an electrophotographic manner prints an image onto a recording medium by forming a visible toner image on a photoconductor by supplying a toner to an electrostatic latent image formed on the photoconductor, transferring the toner image to the recording medium, and fixing the transferred toner image to the recording medium.
A development cartridge is an assembly of elements for forming the visible toner image. The development cartridge is detachably attached to a main body of the image forming apparatus and is a consumable item that is replaced when its service life is over. In a development cartridge using a contact development method, a developing roller and a photoconductor contact each other, thereby forming a development nip.
Once a long period of time has elapsed after the formation of the development nip, the developing roller may be deformed and the photoconductor may be damaged. The deformation of the developing roller and the damage to the photoconductor may cause a change in the development nip and thus may reduce image quality.
Hereinafter, examples of an electrophotographic image forming apparatus and a development cartridge will be described in detail with reference to the accompanying drawings. Elements having substantially the same configurations are denoted by the same reference numerals in the specification and the accompanying drawings, and thus, a repeated description thereof is omitted.
Described herein are a development cartridge capable of easily forming/releasing a development nip through a simple structure, and an electrophotographic image forming apparatus employing the development cartridge.
According to the disclosure, a development cartridge detachable from a main body of an image forming apparatus may include a photosensitive unit including a photosensitive drum, a developing unit including a developing roller, the developing unit being coupled to the photosensitive unit such that the developing unit is movable to a development position where a development nip forms by contact between the developing roller and the photosensitive drum and movable to a release position where the development nip is released, and a pressurizing unit to be shifted to a first position where the pressurizing unit applies an elastic force to the developing unit in a direction such that the developing unit is maintained in the development position, and is shifted to a second position where the pressurizing unit applies an elastic force to the developing unit in a direction such that the developing unit is maintained in the release position.
According to the disclosure, an electrophotographic image forming apparatus may include a main body, and the above-described development cartridge, which is detachable from the main body.
According to examples of a development cartridge and an electrophotographic image forming apparatus, a development nip may be formed/released in a state in which the development cartridge is separated from a main body.
According to examples of a development cartridge and an electrophotographic image forming apparatus, a development nip may be formed by mounting the development cartridge on a main body.
According to examples of a development cartridge and an electrophotographic image forming apparatus, a development nip may be formed by detaching the development cartridge from a main body.
For color printing, the plurality of development cartridges 2 may include four development cartridges 2 for developing images with cyan color, magenta color, yellow color, and black color, respectively. Toners, of cyan (C) color, magenta (M) color, yellow (Y) color, and black (K) color may be contained in the four development cartridges 2, respectively. Although not illustrated, the toners of cyan color, magenta color, yellow color, and black color may be respectively contained in four toner supply containers, and may be respectively supplied from the four toner supply containers to the four development cartridges 2. The image forming apparatus may further include development cartridges 2 for containing and developing toners of other various colors such as light magenta color and white color. Hereinafter, the image forming apparatus including the four development cartridges 2 will be described, and unless there is a particular description contrary thereto, items with reference characters C, M, Y, and K indicate elements for developing images with cyan color, magenta color, yellow color, and black color, respectively.
The main body 1 includes an opening 11 that provides a path for mounting/detaching the plurality of development cartridges 2. A cover 12 opens and closes the opening 11. The exposure device 13, the transfer device, and the fuser 15 are arranged at the main body 1. In addition, a recording medium transport unit for loading and transporting the recording medium P where an image is to be formed is arranged at the main body 1.
In the example, each of the plurality of development cartridges 2 is an integrated development cartridge. Each development cartridge 2 may include a photosensitive unit 100 and a developing unit 200.
The photosensitive unit 100 includes a photosensitive drum 21. The photosensitive drum 21, as a photoconductor on which an electrostatic latent image is formed, may include a conductive metal pipe and a photosensitive layer formed at an outer circumference of the conductive metal pipe. A charging roller 23 is an example of a charger that charges a surface of the photosensitive drum 21 to have a uniform surface potential. Instead of the charging roller 23, a charging brush, a corona charger, or the like may be used. The photosensitive unit 100 may further include a cleaning roller (not shown) for removing foreign substances attached to a surface of the charging roller 23. A cleaning blade 25 is an example of a cleaning member that removes residual toners and foreign substances attached to the surface of the photosensitive drum 21 after a transfer process described below. Instead of the cleaning blade 25, a cleaning device in another form, such as a rotating brush, may be used.
The developing unit 200 includes a toner container 201. The developing unit 200 supplies a toner in the toner container 210 to an electrostatic latent image formed on the photosensitive drum 21, thereby developing the electrostatic latent image into a visible toner image. A developing method may include a one-component developing method using a toner and a two-component developing method using a toner and a carrier. In the example, the developing unit 200 employs the one-component developing method. A developing roller 22 supplies a toner to the photosensitive drum 21. A developing bias voltage may be applied to the developing roller 22 to supply the toner to the photosensitive drum 21.
The one-component developing method may be classified into a contact development technique in which the developing roller 22 and the photosensitive drum 21 rotate while contacting each other and a non-contact development technique in which the developing roller 22 and the photosensitive drum 21 rotate while being separate from each other by tens to hundreds of microns. In the example, a contact development technique in which the developing roller 22 and the photosensitive drum 21 contact each other and thus form a development nip N is used. A supply roller 27 supplies the toner in the toner container 201 to a surface of the developing roller 22. To this end, a supply bias voltage may be applied to the supply roller 27. The developing unit 20 may further include a regulating member (not shown) for regulating an amount of toner to be supplied by the developing roller 22 to the development nip N where the photosensitive drum 21 and the developing roller 22 contact each other. For example, the regulating member may be a doctor blade that elastically contacts the surface of the developing roller 22.
The exposure device 13 radiates light modulated in correspondence with image information onto the photosensitive drum 21 and thus forms the electrostatic latent image on the photosensitive drum 21. Examples of the exposure device 13 may include a laser scanning unit (LSU) using a laser diode as a light source and a light-emitting diode (LED) exposure device using an LED as a light source.
The transfer device may include an intermediate transfer belt 31, first transfer rollers 32, and a second transfer roller 33. The intermediate transfer belt 31 temporarily receives a toner image developed on the photosensitive drum 21 of each of the development cartridges 2C, 2M, 2Y, and 2K. The intermediate transfer belt 31 is circulated while being supported by supporting rollers 34, 35, and 36. Four first transfer rollers 32 are positioned to face the photosensitive drums 21 of the development cartridges 2C, 2M, 2Y, and 2K with the intermediate transfer belt 31 therebetween. A first transfer bias voltage is applied to the four first transfer rollers 32 to firstly transfer toner images, which are developed on the photosensitive drums 21, to the intermediate transfer belt 31. Instead of the first transfer rollers 32, a corona transfer device or a pin scorotron-type transfer device may be used. The second transfer roller 33 is positioned to face the intermediate transfer belt 31. A second transfer bias voltage is applied to the second transfer roller 33 to transfer, to the recording medium P, the toner images that are firstly-transferred to the intermediate transfer belt 31.
When a print command is transmitted from a host (not shown), etc., a controller (not shown) charges, by using the charging roller 23, the surface of the photosensitive drum 21 to have a uniform surface potential. The exposure device 13 forms electrostatic latent images on the photosensitive drums 21 by scanning four light beams to the photosensitive drums 21 of the development cartridges 2C, 2M, 2Y, and 2K, the four light beams being modulated according to image information corresponding to cyan, magenta, yellow, and black colors, respectively. The developing rollers 22 of the development cartridges 2C, 2M, 2Y, and 2K supply C, M, Y, and K toners to the photosensitive drums 21, respectively, thereby developing the electrostatic latent images into visible toner images. The developed toner images are firstly transferred to the intermediate transfer belt 31. Recording media P loaded on a loading plate 17 are output one by one by a pick-up roller 16, and are transported to a transfer nip by a feed roller 18, the transfer nip being formed by the second transfer roller 33 and the intermediate transfer belt 31. The toner images that are firstly-transferred to the intermediate transfer belt 31 are secondly transferred to the recording medium P due to the second transfer bias voltage applied to the second transfer roller 33. When the recording medium P passes through the fuser 15, the toner images are fixed on the recording medium P due to heat and pressure. The recording medium P on which fixing has been completed is externally discharged by a discharge roller 19.
The development cartridges 2C, 2M, 2Y, and 2K may be sequentially detachably attached to the main body 1 through the opening 11 opened by the door 12. That is, the plurality of development cartridges 2 may be mounted on the main body 1 by opening the door 12 and causing the development cartridges 2 to slide in a mounting direction B1. Also, the development cartridges 2 may be detached from the main body 1 by opening the door 12 and causing the development cartridges 2 to slide in a removal direction B2.
To prevent the photosensitive drum 21 from being damaged due to contact between the photosensitive drum 21 and the intermediate transfer belt 31 during a process of mounting the development cartridge 2, at the beginning of mounting, the development cartridge 2 may slide in the mounting direction B1 in a state in which the photosensitive drum 1 is separate from the intermediate transfer belt 31, and may be guided by a guide unit (not shown) in the main body 1 to allow the photosensitive drum 21 to contact the intermediate transfer belt 31 when the development cartridge 2 reaches a mounting position.
The development cartridges 2C, 2M, 2Y, and 2K may be mounted on the main body 12 in a tray manner.
To prevent the photosensitive drum 21 from being damaged due to contact between the photosensitive drum 21 and the intermediate transfer belt 31 during a process of inserting the tray 5 into the main body 1, the photosensitive drum 21 may be separate from the intermediate transfer belt 31 until the tray 5 is inserted into the main body 1 and the door 12 is closed. That is, the tray 5 may slide and enter the main body 1 in a state in which the photosensitive drum 21 is spaced apart from the intermediate transfer belt 31. When the tray 5 is inserted into the main body 1, and the door 12 is closed, the tray 5 is moved in a descending direction C1 by a closing operation of the door 12 to access the intermediate transfer belt 31, and the photosensitive drum 21 contacts the intermediate transfer belt 31. When the door 12 is opened, the tray 5 is moved in an ascending direction C2 and is separated from the intermediate transfer belt 31. By causing the tray 5 to slide in this state, the tray 5 may be withdrawn from the main body 1 as illustrated in
Referring to
The development cartridge 2 further includes a pressurizing unit 400. The pressurizing unit 400 is installed at the photosensitive unit 100 and elastically presses the developing unit 200. A rotation direction of the developing unit 200 is determined according to a position of a portion pressed by the pressurizing unit 400. The developing unit 200 includes first and second pressing portions 221 and 222. The pressurizing unit 400 may move to a first position for pressing the first pressing portion 221 and a second position for pressing the second pressing portion 222. For example, the pressurizing unit 400 is mounted on a rotation shaft 302 provided in the photosensitive unit 100 to be rotatable to the first and second positions. The first position is a position for pressing the first pressing portion 221 and rotating the developing unit 200 with respect to the hinge shaft 301 in a first direction A1 for forming the development nip N, and the second position is a position for pressing the second pressing portion 222 and rotating the developing unit 200 with respect to the hinge shaft 301 in a second direction A2 for releasing the development nip N. The pressurizing unit 400 applies an elastic force in a direction of maintaining the developing unit 200 in the development position to the developing unit 200 at the first position and applies an elastic force in a direction of maintaining the developing unit 200 in the release position to the developing unit 200 at the second position.
The first pressing portion 221 is at an opposite side to that of the developing roller 22, based on a line L connecting the rotation shaft 302 and the hinge shaft 301 to each other, and the second pressing portion 222 is at the same side as the developing roller 22, based on the line L. A first stopper 221a prevents the pressurizing unit 400 from rotating beyond the first pressing portion 221. A second stopper 222a prevents the pressurizing unit 400 from rotating beyond the second pressing portion 222. A first position determiner 221b is at an opposite side to that of the first stopper 221a based on a rotation direction of the pressurizing unit 400 and maintains the pressurizing unit 400 in the first position. A second position determiner 222b is at an opposite side to that of the second stopper 222a based on the rotation direction of the pressurizing unit 400 and maintains the pressurizing unit 400 in the second position. While being elastically compressed towards the rotation shaft 302, the pressurizing unit 400 may rotate to the second position or the first position beyond the first and second position determiners 221b and 222b.
A process of forming/releasing the development nip N through the above-described configuration will now be described in detail. A process of releasing the development nip N will be described first.
As illustrated in
When the pressurizing unit 400 is rotated from the first position to the second position, the pressing member 420 retreats in an opposite direction of the elastic force of the elastic member 430 and thus rotates to the second position beyond the first position determiner 221b. Until the pressurizing unit 400 reaches the line L (that is, until a direction of an elastic force applied to the developing unit 200 by the pressurizing unit 400 is aligned with that of the line L), the elastic force of the pressurizing unit 400 is maintained in a direction of forming the development nip N. That is, the elastic force of the pressurizing unit 400 works as a maintaining force maintaining the development nip N.
When the pressurizing unit 400 moves beyond the line L, the elastic force of the pressurizing unit 400 is shifted in a direction of releasing the development nip N. That is, the elastic force of the pressurizing unit 400 works as a releasing force releasing the development nip N. Accordingly, the developing unit 200 is rotated in the second direction A2 with respect to the hinge shaft 301 by the elastic force of the pressurizing unit 400, and the developing roller 22 is separated from the photosensitive drum 21 to release the development nip N.
When the pressurizing unit 400 reaches the second position beyond the second position determiner 222b, the pressing member 420 presses the second pressing portion 222, and the development nip N may be maintained in a released state by the elastic force of the pressurizing unit 400. An end portion of the pressing member 420 is obstructed by the second stopper 222a. Accordingly, the pressing member 400 does not rotate beyond the second pressing portion 222. In addition, the end portion of the pressing member 420 is obstructed by the second position determiner 222b. Accordingly, the pressurizing unit 400 is stably maintained in the second position.
Next, a process of forming the development nip N will be described.
As illustrated in
When the pressurizing unit 400 is rotated from the second position to the first position, the pressing member 420 retreats in an opposite direction of the elastic force of the elastic member 430 and thus rotates to the first position beyond the second position determiner 222b. Until the pressurizing unit 400 reaches the line L, the elastic force of the pressurizing unit 400 is maintained in a direction of releasing the development nip N. That is, the elastic force of the pressurizing unit 400 works as a releasing force releasing the development nip N.
When the pressurizing unit 400 moves beyond the line L, the elastic force of the pressurizing unit 400 is shifted in a direction of forming the development nip N. That is, the elastic force of the pressurizing unit 400 works as a force forming the development nip N. Accordingly, the developing unit 200 is rotated in the first direction A1 with respect to the hinge shaft 301 by the elastic force of the pressurizing unit 400, and the developing roller 22 contacts the photosensitive drum 21 to form the development nip N.
When the pressurizing unit 400 reaches the first position beyond the first position determiner 221b, the pressing member 420 pushes the first pressing portion 221, and the development nip N may be maintained in a formed state by the elastic force of the pressurizing unit 400. An end portion of the pressing member 420 is obstructed by the first stopper 221a. Accordingly, the pressing member 400 does not rotate beyond the first pressing portion 221. In addition, the end portion of the pressing member 420 is obstructed by the first position determiner 221b. Accordingly, the pressurizing unit 400 is stably maintained in the first position.
As described above, when the pressurizing unit 400 is at the first position, the pressurizing unit 400 provides a maintaining force maintaining the development nip N to the developing unit 200. Until the pressurizing unit 400 reaches the line L from the first position, the maintaining force is continuously provided to the developing unit 200. Accordingly, in spite of external shock applied to an image forming apparatus or operation shock of an image forming apparatus, the development nip N may be stably maintained in a formed state, and thus, stable image quality may be obtained.
When the pressurizing unit 400 is at the second position, the pressurizing unit 400 provides a releasing force releasing the development nip N to the developing unit 200. Until the pressurizing unit 400 reaches the line L from the second position, the releasing force is continuously provided to the developing unit 200. Accordingly, the development nip N may be stably maintained in a released state even during a process of providing the development cartridge 2 for manufacture, transport, and sales, and thus, deformation or destruction of the developing roller 22 and/or the photosensitive drum 21 may be reduced.
In addition, a function of forming/releasing the development nip N as a development nip control member and a function of providing an elastic force maintaining the development nip N as an elastic member are integrated in the pressurizing unit 400. Accordingly, the development nip N may be controlled and maintained through a simple structure.
When the pressurizing unit 400 is shifted from the first position to the second position or from the second position to the first position, a direction of an elastic force may change from a maintaining force to a releasing force or reversely. Accordingly, reliability of an operation of forming/releasing the development nip N may improve.
Through the above-described configuration, by moving the pressurizing unit 400 provided in the development cartridge 2 itself to the first and second positions, the development nip N may be easily formed/released.
The pressurizing unit 400 may be shifted from the second position to the first position by an operation of mounting the development cartridge 2 in the main body 1.
Referring to
As denoted by dashed lines in
When the development cartridge 2 is detached from the main body 1, the pressurizing unit 400 is maintained in the first position. Accordingly, if necessary, the development nip N may be released by rotating the pressurizing unit 400 to the second position manually.
The pressurizing unit 400 may be shifted from the first position to the second position by an operation of detaching the development cartridge 2 from the main body 1.
Through the above-described configuration, when the development cartridge 2 is pushed in the mounting direction B1 and mounted on the main body 1 in a state in which the pressurizing unit 400 is at the second position, the interference lever 440 is guided by the first operating portion 41, and the pressurizing unit 400 is rotated from the second position to the first position. When the development cartridge 2 is pulled in the removal direction B2 and detached from the main body 1, the interference lever 440 is guided by the second operating portion 42, and the pressurizing unit 400 is rotated from the first position to the second position.
As illustrated in
To detach the development cartridge 2, when the door 12 is opened, the tray 5 moves in the ascending direction C2. Thus, the pressurizing unit 400 is rotated from the first position to the second position, and the development nip N is released. In this state, by pulling the tray 5 in the removal direction B2, the tray 5 may be withdrawn from the main body 1 as illustrated in
A structure in which the development cartridge 2 is mounted on the main body 1 and then the operating portion 40 is moved in the mounting direction B1 or the removal direction B2 to rotate the pressurizing unit 400 to the first and second positions may also be employed.
Through the above-described configuration, as denoted by solid lines in
In the above-described examples, a structure in which the developing unit 200 is coupled to the photosensitive unit 100 to be rotatable to a development position where the development nip N is formed and a release position where the development nip N is released with respect to the hinge shaft 301 has been described. However, a coupling form of the developing unit 200 and the photosensitive unit 100 is not limited thereto.
As an example, the developing unit 200 may be coupled to the photosensitive unit 100 to be slidable to a development position where the development nip N is formed and a release position where the development nip N is released.
Referring to
The development cartridge 2 further includes the pressurizing unit 500. Referring to
The pressurizing unit 500 has a first position (
A process of forming/releasing the development nip N through the above-described configuration will now be described in detail. A process of releasing the development nip N is described first.
As illustrated in
When the developing unit 200 slides in a direction in which the developing roller 22 is separated from the photosensitive drum 21 from a state illustrated in
When the pressurizing unit 500 is rotated beyond the line L2 by causing the developing unit 200 to further slide, a direction of the elastic force of the pressurizing unit 500 is shifted to a direction of releasing the development nip N. That is, the elastic force of the pressurizing unit 500 works as a releasing force releasing the development nip N. Accordingly, due to the elastic force of the pressurizing unit 500, the developing unit 200 further slides in the direction in which the developing roller 22 is separated from the photosensitive drum 21.
When the pressurizing unit 500 reaches the second position, the developing unit 200 may be elastically biased in a direction of rotating in the second direction A2 by the elastic force of the pressurizing unit 500, and the development nip N may be maintained in a released state.
Next, a process of forming the development nip N will be described.
As illustrated in
When the developing unit 200 slides in a direction in which the developing roller 21 approaches the photosensitive drum 21, the elastic force of the pressurizing unit 500 is maintained in the direction of releasing the development nip N until the pressurizing unit 500 rotates and reaches the line L2.
When the developing unit 200 further slides, and thus, the pressurizing unit 500 rotates beyond the line L2, the direction of the elastic force of the pressurizing unit 500 is shifted to a direction of causing the developing unit 200 to slide in the direction in which the developing roller 22 approaches the photosensitive drum 21. Accordingly, due to the elastic force of the pressurizing unit 500, the developing unit 200 more easily slides in the direction in which the developing roller 22 approaches the photosensitive drum 21.
When the pressurizing unit 500 reaches the first position, the developing roller 22 may contact the photosensitive drum 21 to form the development nip N as illustrated in
Through the above-described configuration, the pressurizing unit 500 provided in the development cartridge 2 itself may be shifted to the first and second positions by causing the developing unit 200 to slide with respect to the photosensitive unit 100, and thus, the development nip N may be easily formed/released.
In the above-described example, a structure in which the photosensitive unit 100 includes first and second guide slots and the developing unit 200 includes first and second guide protrusions is employed. However, a structure in which the developing unit 200 includes first and second guide slots and the photosensitive unit 100 includes first and second guide protrusions may also be employed. The number of each of a guide slot and a guide protrusion is not limited to 2, and three or more may be provided. When three guide slots are provided, the three guide slots may each extend in a sliding direction of the developing unit 200 and may be generally arranged in a triangle form.
The pressurizing unit 500 may be shifted from the second position to the first position by an operation of mounting the development cartridge 2 on the main body 1. For example, as denoted by dashed lines in
When the development cartridge 2 is detached from the main body 1, the pressurizing unit 500 is maintained in the first position. Accordingly, if necessary, the pressurizing unit 500 may be rotated to the second position manually by causing the developing unit 200 to slide, and thus, the development nip N may be released.
The pressurizing unit 500 may be shifted from the first position to the second position by an operation of detaching the development cartridge 2 from the main body 1.
Through the above configuration, when the development cartridge 2 is pushed in the mounting direction B1 and mounted on the main body 1 in a state in which the pressurizing unit 500 is at the second position, the pressurizing unit 500 is rotated from the second position to the first position by sliding of the developing unit 200 guided by the first operating portion 61. When the development cartridge 2 is pulled in the removal direction B2 and detached from the main body 1, the pressurizing unit 500 is rotated from the first position to the second position by sliding of the developing unit 200 guided by the second operating portion 62.
A structure in which the development cartridge 2 is mounted on the main body 1 and then the operating portion 60 is moved in the mounting direction B1 or the removal direction B2 to rotate the pressurizing unit 500 to the first and second positions may also be employed. Referring to
The driver 70 may be used to drive the operating portion 60 illustrated in
The development cartridge 2 includes the photosensitive unit 100 and the developing unit 200. The photosensitive unit 100 includes the photosensitive drum 21 and the charging roller 23. Reference numeral 24 denotes a cleaning roller for removing foreign substances attached on the charging roller 23. The developing unit 200 includes the developing roller 22 and the supply roller 27. First and second agitators 28a and 28b for stirring toner and carrying toner to the supply roller 27 may be arranged in the toner container 201. Reference numeral 25 denotes a regulating member for regulating an amount of toner which is attached to the developing roller 22 and is supplied to the development nip N.
A transfer roller 14 faces the photosensitive drum 1, and the recording medium P is transported between the photosensitive drum 21 and the transfer roller 14.
Through the above-described configuration, the exposure device 13 forms an electrostatic latent image by scanning light modulated according to image information to the photosensitive drum 21. The developing roller 22 forms a visible toner image on a surface of the photosensitive drum 21 by supplying toner to the electrostatic latent image. The recording medium P loaded on the loading plate 17 is transported to an area where the photosensitive drum 21 and the transfer roller 14 face each other by the pick-up roller 16 and the feed roller 18, and the toner image is transferred from the photosensitive drum 21 to the recording medium P by a transfer bias voltage applied to the transfer roller 14. When the recording medium P passes through the fuser 15, the toner image is fixed on the recording medium P due to heat and pressure. The recording medium P on which fixing has been completed is discharged by the discharge roller 19.
The photosensitive unit 100 and the developing unit 200 may be individually replaced.
The development cartridge 2 may be detached from the main body 1 in a state in which the developing unit 200 is mounted on the photosensitive unit 100. In addition, the developing unit 200 may be detached from the mounting portion 140 in a state in which the photosensitive unit 100 is mounted on the main body 1.
Through the above configuration, the photosensitive unit 100 and the developing unit 200 may be individually mounted on/detached from the main body 1, and thus, it is simple to replace the photosensitive unit 100 or the developing unit 200. In addition, since the photosensitive unit 100 and the developing unit 200 are individually treated during a mounting/detaching process, burden on weight imposed on a user may decrease, and thus, user convenience may improve.
Referring to
The photosensitive unit 100 may include a maintaining unit for maintaining the pressurizing unit 600 in the second position when the developing unit 200 is detached from the mounting portion 140. Referring to
Referring to
A process of forming/releasing the development nip N through the above configuration will now be described in detail. A process of releasing the development nip N is described first.
Referring to
When the developing unit 200 is moved in the direction B2 of being removed from the mounting portion 140, the elastic member 630 of the pressurizing unit 600 is compressed. When a position where the second guide boss 206 may be escaped from the second accommodation portion 142 is reached, the developing unit 200 is slightly lifted upwards. Thus, the second guide boss 206 is escaped from the second accommodation portion 142, and the pressurizing unit 600 is rotated to the second position with respect to the rotation shaft 207.
Until the pressurizing unit 600 reaches a position parallel to the first guide rail 143 (to be precise, until a direction of an elastic force applied to the developing unit 200 by the pressurizing unit 600 becomes a direction parallel to the first guide rail 143), the elastic force of the pressurizing unit 600 is maintained in a direction of forming the development nip N.
When the pressurizing unit 600 rotates beyond the position parallel to the first guide rail 143, the elastic force of the pressurizing unit 600 is shifted in a direction of releasing the development nip N. Accordingly, the developing unit 200 is detached from the mounting portion 140 more easily by the elastic force of the pressurizing unit 600, and the development nip N is released. The pressurizing unit 600 is rotated to the second position according to detachment of the developing unit 200.
As illustrated in
A process of forming the development nip N will be described below.
To mount the developing unit 200 on the photosensitive unit 100, the pressing portion 207 of the developing unit 200 is positioned at the receiving portion 622 of the pressurizing unit 600 in the second position as illustrated in
When the developing unit 200 is pushed in the mounting direction B1, the first guide boss 205 is guided by the first guide rail 143, and then, the second guide boss 206 is brought into contact with the second guide rail 144. When the developing unit 200 is continuously pushed in the mounting direction B1, the first and second guide bosses 205 and 206 are respectively guided by the first and second guide rails 143 and 144. The elastic force of the pressurizing unit 600 is applied in the direction of separating the developing unit 200 from the mounting portion 140.
When the pressurizing unit 600 rotates to the first position beyond a position parallel to the first guide rail 143, the elastic force of the pressurizing unit 600 is shifted in a direction of forming the development nip N, the developing unit 200 is moved in the mounting direction B1 by the elastic force of the pressurizing unit 600, and the first and second guide bosses 205 and 206 reach the first and second accommodation portions 141 and 142. The developing roller 22 contacts the photosensitive drum 21, and thus, the development nip N is formed. The pressurizing unit 600 reaches the first position, and the pressing member 620 pushes the pressing portion 207. The development nip N may be maintained in a formed state by the elastic force of the pressurizing unit 600.
While this disclosure has been shown and described with reference to examples thereof, it will be understood by one of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0187633 | Dec 2015 | KR | national |
This application is a continuation of International Application No. PCT/KR2016/009314 filed on Aug. 23, 2016. The International Application claims the priority benefit of Korean Patent Application No. 10-2015-0187633 filed on Dec. 28, 2015. Both the International Application and the Korean Patent Application are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4862212 | Tanzawa | Aug 1989 | A |
7869740 | Yoshimura | Jan 2011 | B2 |
9026002 | Sato | May 2015 | B2 |
20180136604 | Lee | May 2018 | A1 |
20190137904 | Jung | May 2019 | A1 |
Number | Date | Country |
---|---|---|
2009-181002 | Aug 2009 | JP |
10-2011-0071440 | Jun 2011 | KR |
10-2012-0079937 | Jul 2012 | KR |
10-2015-0127501 | Nov 2015 | KR |
10-2010-0132755 | Dec 2015 | KR |
Number | Date | Country | |
---|---|---|---|
20180307179 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2016/009314 | Aug 2016 | US |
Child | 16017635 | US |