The present invention relates to building components, and more specifically composite lightweight building panels which can be interconnected to build structures such as modular buildings or applied as cladding to building frames.
Due to the high cost of traditional concrete components and the extensive transportation and labor costs associated therein, there is a significant need in the construction industry to provide a lightweight, precast, composite building panel which may be transported to a building site and assembled to provide a structure with superior strength and insulative properties. Previous attempts to provide these types of materials have failed due to the extensive transportation costs, low insulative values and thermal conductivity associated with prefabricated concrete wire reinforced products. Further, due to the brittle nature of concrete, many of these types of building panels become cracked and damaged during transportation.
More specifically, the relatively large weight per square foot of prior art fabricated building panels has resulted in high expenses arising not only from the amount of materials needed for fabrication, but also the cost of transporting and erecting the modules. Module weight also placed effective limits on the height of structures, such as stacked modules, e.g. due to limitations on the total weight carried by the foundations, footings and lowermost modules. Furthermore, there is substantial fabrication labor expense that can arise from efforts needed to design reinforcement, and the materials and labor costs involved in providing and placing reinforcement materials. Accordingly, it would be useful to provide a system for modular construction which is relatively light, can be readily stacked to heights greater than in previous configurations and, preferably, inexpensive to design and manufacture.
Further, in many situations panels or modules are situated in locations where it is desirable to have openings therethrough to accommodate doorways, windows, cables, pipes and the like. In some previous approaches, panels were required to be specially designed and cast so as to include any necessary openings, requiring careful planning and design and increasing costs due to the special, non-standard configuration of such panels. In other approaches, panels were cast without such openings and the openings were formed after casting, e.g. by sawing or similar procedures. Such post-casting procedures as cutting, particularly through the thick and/or steel-reinforced panels as described above, is a relatively labor-intensive and expensive process. In many processes for creating openings, there was a relatively high potential for cracking or splitting of a panel or module. Accordingly, it would be useful to provide panels and modules which can be post-fitted with openings such as doors and windows in desired locations and with a reduced potential for cracking or splitting.
One further problem associated with metallic wire materials used in conjunction with concrete is the varying rates of expansion and contraction. Thus with extreme heating and cooling the metallic wire tends to separate from the concrete, thus creating cracks, exposure to moisture and the eventual degradation of both the concrete and wire reinforcement.
One example of a composite building panel which attempts to solve these problems with modular panel construction is described in U.S. Pat. No. 6,202,375 to Kleinschmidt (the '375 patent). In this invention, a building system is provided which utilizes an insulative core with an interior and exterior sheet of concrete and which is held together with a metallic wire mesh positioned on both sides of an insulative core. The wire mesh is embedded in concrete, and held together by a plurality of metallic wires extending through said insulative core at a right angle to the longitudinal plane of the insulative core and concrete panels. Although providing an advantage over homogenous concrete panels, the composite panel disclosed in the '375 patent does not provide the necessary strength and flexure properties required during transportation and high wind applications. Further, the metallic wire mesh materials are susceptible to corrosion when exposed to water during fabrication, and have poor insulative qualities due to the high heat transfer qualities of metallic wire. Thus, the panels disclosed in the '375 patent may eventually fail when various stresses are applied to the building panel during transportation, assembly or subsequent use. Furthermore, these panels have poor insulative qualities in cold climates due to the high heat transfer associated with the metallic wires.
Accordingly, there is a significant need in the construction and building industry to provide a composite building panel which may be used in modular construction and which is lightweight, provides superior strength and has high insulative values. Further, a method of making these types of building panels is needed which is inexpensive, utilizes commonly known manufacturing equipment, and which can be used to mass produce building panels for use in the modular construction of warehouses, low cost permanent housing, hotels, and other buildings.
It is thus one aspect of the present invention to provide a composite wall panel which has superior strength, high insulating properties, is lightweight for transportation and stacking purposes and is cost effective to manufacture. Thus, in one embodiment of the present invention, a substantially planar insulative core with interior and exterior surfaces is positioned adjacent an exterior concrete face which is reinforced with a carbon fiber grid. A plurality of reinforcing ribs are positioned substantially adjacent the insulative core and are operably interconnected to the exterior face with a plurality of carbon fiber strands. Preferably, the carbon fiber mesh grid is comprised of a plurality of first carbon fiber strands extending in a first direction which are operably interconnected to a plurality of second carbon fiber strands oriented in a second direction. Preferably, the carbon fiber mesh grids are embedded within the reinforcing ribs and exterior concrete face. Further, in one embodiment the carbon fiber grid in the exterior concrete face is tensioned during fabrication and prior to the concrete curing to provide enhanced strength to the finished product. In a preferred embodiment, a fastener friendly nailing strip is positioned on an interior surface of the wall panel opposite each of the reinforcing ribs for the attachment of drywall, paneling, and other interior trim materials.
It is another aspect of the present invention to provide a spacer which controls the separation of the insulative panels during fabrication to assure that the reinforcing ribs have a uniform thickness. In one embodiment, these spacers have spikes that are driven into the insulative panels, and preferably also include a retention device to support one or more reinforcing bars.
It is another aspect of the present invention to provide a composite wall panel which can be easily modified to accept any number of exterior textures, surfaces or cladding materials for use in a plurality of applications. Thus, the present invention is capable of being finished with a brick surface, stucco, siding and any other type of exterior surface. In one embodiment of the present invention, a paraffin protective covering is provided on the exterior surface for protection of the exterior surface during manufacturing. The paraffin additionally prevents an excessive bond between the individual bricks and exterior concrete wall to allow the removal of a cracked or damaged brick and additionally has been found to reduce cracking in the bricks due to the differential shrinkage of the exterior concrete layer and clay brick. Furthermore, other types of materials such as drywall and other interior finishes can be applied to the interior concrete panel as necessary for any given application.
It is yet another aspect of the present invention to provide a composite modular wall panel which can be used to quickly and efficiently construct modular buildings and temporary shelters and is designed to be completely functional with regard to electrical wiring and other utilities such as telephone lines, etc. Thus, the present invention in one embodiment includes at least one utility line which may be positioned at least partially within the composite wall panel and which accepts substantially any type of utility line which may be required in residential or commercial construction, and which can be quickly interconnected to exterior service lines. This utility line may be oriented in one or more directions and positioned either near the interior concrete panel, exterior concrete panel, or both.
It is yet another aspect of the present invention to provide a novel surface configuration of the insulative core which assures a preferred spacing between the surface of the insulative core and the carbon fiber grid. This surface configuration is applicable for a front surface, a rear surface, or both depending on the application. More specifically, the spacing is designed to provide a gap between the interior and/or the exterior surface of the insulative core and the carbon fiber grids to assure that concrete or other facing materials become positioned between the surface of the insulative core and the carbon fiber grid. This improved and consistent spacing enhances the strength and durability of the insulative panel when interconnected to the facing material, carbon fiber grids and transverse fibers and/or steel prestressing strands.
In one embodiment of the present invention the insulative core may have an interior and/or an exterior surface which is undulating, i.e., wavy alternative embodiments may have channels or protruding rails, spacer “buttons”, a “waffleboard” configuration, or other shapes which create a preferred spacing between the surface-of the insulative material and the fiber grids. Preferably, the spacing apparatus, channels, rails or other spacers are integrally molded with the insulative core to reduce labor and expenses. Alternatively, these spacing apparatus may be interconnected to the insulative foam after manufacturing, and may be attached with adhesives, screws, nails, staples or other interconnection means well known by one skilled in the art.
It is a further aspect of the present invention to provide a lightweight, durable building panel which utilizes concrete and expanded polystyrene materials, along with a unique geometry of carbon fiber, steel reinforcing rods, and wire mesh to create a building panel with superior strength and durability. The building may utilize one or more reinforcing materials such as carbon fiber, wire mesh or steel reinforcing bars positioned along 1) a perimeter edge; 2) an interior portion within the perimeter edge; or 3) both along the perimeter edges and within a predetermined interior portion of the building panel. Thus, in one embodiment of the present invention a lightweight, durable concrete building panel is provided, comprising:
a concrete building panel comprising an inner surface, an outer surface, a first end and a second end, and a substantially longitudinal axis defined between said first end and said second end;
a tensioned first carbon fiber grid positioned within said substantially planar concrete panel between said first end and said second end and positioned proximate to said outer surface in an exterior concrete layer;
a plurality of foam core sections positioned on said exterior concrete layer and defining a plurality of reinforcing rib channels between said plurality of foam core sections which are substantially filled with a concrete material;
at least one carbon fiber shear strip positioned within said plurality of reinforcing rib channels and extending into said exterior concrete layer; and
at least one reinforcing bar positioned proximate to said at least one carbon fiber shear strip and positioned within said plurality of reinforcing rib channels.
In a preferred embodiment of the present invention, the insulative core is comprised of a plurality of individual insulative panels. The seam of the insulative panels preferably has a cut-out portion which is used to support reinforcing materials such as rebar, carbon fiber or other material.
It is a further aspect of the present invention to provide a method of fabricating an insulative concrete building panel in a controlled manufacturing facility which is cost effective, utilizes commonly known building materials and produces a superior product. It is a further aspect of the present invention to provide a manufacturing process which can be custom tailored to produce a building panel with custom sizes, allows modifications for windows and doors, and which utilizes a variety of commonly known materials without significantly altering the fabrication protocol.
Thus, in another aspect of the present invention, a method for fabricating low density, durable concrete building panel is provided, comprising:
a) providing a casting form having a first end, a second end, and lateral edges extending therebetween;
b) positioning a first grid of carbon fiber material into said concrete material;
c) applying tension to said first grid of carbon fiber material;
d) positioning a plurality of reinforcing strands in said casting form;
e) applying tension to said plurality of reinforcing strands;
f) pouring a first layer of concrete material into a lower portion of said form;
g) positioning a layer of low density insulative material onto said first layer of concrete material, said low density insulative material having a plurality of reinforcing rib sections extending substantially between said first end and said second end, said reinforced rib sections comprising:
h) pouring a second layer of concrete within said plurality of reinforced rib sections;
i) allowing said first layer and said second layer of concrete to cure; and
j) removing said concrete building panel from said form, wherein said lightweight concrete building panel is available for transportation and use.
It is a further aspect of the present invention to provide a novel manufacturing method wherein one or more “negatives” are positioned within the casting form prior to pouring the exterior layer of concrete. The negatives create a void of concrete in a predetermined opening such as a window or door, and which can be repeatedly used in numerous castings of wall panels. In one embodiment the “negative” is a rubber plastic mat that is laser oriented to a proper position. Weights or magnets or both may be utilized to prevent inadvertent movement.
In one aspect of the present invention, a method of manufacturing a low density concrete composite building panel 2 is provided herein. These insulated concrete panels can withstand 150 MPG wind loads and tornado driven projectiles, yet are extremely light weight to transport and erect with an average density of approximately 18 lbs/Ft.2 (PSF). The exterior finishes of the wall panels can incorporate clapboard, paneled brick, stucco and plain concrete for field finishing. The interior stud surfaces are fastener friendly with 2 inch wide screw strips that run top to bottom as well as along all perimeters. Further, a “negative-liner” casting system is provided to offer a menu of rough opening sizes that can be custom tailored for the needs of the consumer.
The manufacturing process is generally initiated by providing a casting table 8 having a first end and a second end with lateral edges extending therebetween, the form providing a shell for receiving the concrete materials and other components. If window or door openings are required, a negative is laser-located and positioned within the casting table. A concrete block or other weight or magnets may further be used to prevent movement of the negative. A first grid of reinforcing materials is then positioned into the casting table. Preferably, the first grid of reinforcing materials comprises a carbon fiber grid which may be put under tension between about 1000-5000 lbs. Once the carbon fiber grid is tensioned, a predetermined amount of concrete material is placed in the casting table. The concrete may be vibrated to remove air and improve the uniform density. Further, one or more tensioned wire cables or metallic bars may be positioned in the casting table prior to the introduction of the concrete, and which are generally oriented in a longitudinal direction of the building panel 2. After the concrete is cured any excess carbon fiber grid and metal reinforcing strands are cut and trimmed from the perimeter edges of the building panel 2. Next, a layer of insulative core 4 is positioned on the interior surface of the concrete material. In a preferred embodiment of the present invention, the insulative core 4 is comprised of a plurality of individual insulative form billets 4 which have been cut to the preferred dimensions of the composite building panel form. Further, at predetermined widths and on the exterior edges of the composite building panel, a reinforcing strip 48 is provided which may include a second grid of reinforcing materials such as carbon fiber, and which extends substantially between the first and second end of the insulative core 4. Alternatively, rebar or other reinforcing materials may be positioned around the perimeter edge of the building panel 2, and along any window/door openings for increased strength and performance.
Referring now to the drawings,
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
One example of a carbon fiber grid ribbon 30 which may be used in the present invention is the “MeC-GRID™” carbon fiber material which is manufactured by Hexcel Clark-Schwebel and as described in U.S. Pat. No. 6,236,629, which is incorporated herein by reference. The interior and exterior carbon grid tape is comprised generally of looped or crossed weft and warped strands, that run substantially perpendicular to each other and are machine placed on several main tape “stabilizing strands” that run parallel to the running/rolling direction of the tape.
With regard to the concrete utilized in various embodiments of the present application, a low density concrete such as Cret-o-Lite™, which is manufactured by Advanced Materials Company of Hamburg, N.Y., may be used. This is an air dried cellular concrete which is nailable, drillable, screwable, sawable and very fire resistant.
In one embodiment, the exterior concrete layer 16 may be comprised of a dense concrete material to resist moisture penetration and in one embodiment VISCO CRETE™ is utilized which enables the high slumped short pot life liquification of concrete to enable the concrete to be placed in narrow wall cavities with minimum vibration and thus create a high density, substantially impermeable concrete layer. VISCO-CRETE™ is manufactured by the Sika Corporation, located in Lyndhurst, N.J. The exterior concrete layer 16 is preferably about ¾ to 2 inches thick, and more preferably about 1.75 inches thick. This concrete layer has a compression strength of approximately 5000 psi after 28 days of curing, and is thus extremely weather resistant.
In one embodiment of the present invention, a vapor barrier material may be positioned next to or on to the exterior surface of the insulative core 4, or alternatively on the interior surface of the insulative foam core 4. The vapor barrier 12 impedes the penetration of moisture and thus protects the foam core from harsh environmental conditions caused by temperature changes. Preferably, the vapor barrier 12 is comprised of a plastic sheet material, or other substantially impermeable materials that may be applied to the insulative core 4 during manufacturing of the foam core, or alternatively applied after manufacturing and prior to positioning of the insulative foam core 4.
To assist in the understanding of the present invention, the following is a list of the components identified in the drawings and the numbering associated therewith:
The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commenced here with the above teachings and the skill or knowledge of the relevant art are within the scope in the present invention. The embodiments described herein above are further extended to explain best modes known for practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments or various modifications required by the particular applications or uses of present invention. It is intended that the dependent claims be construed to include all possible embodiments to the extent permitted by the prior art.