The invention generally relates to preventing corrosion during the start up and shut down of a fuel cell.
A fuel cell is an electrochemical device that converts chemical energy directly into electrical energy. There are many different types of fuel cells, such as a solid oxide fuel cell (SOFC), a molten carbonate fuel cell, a phosphoric acid fuel cell, a methanol fuel cell and a proton exchange membrane (PEM) fuel cell.
As a more specific example, a PEM fuel cell includes a PEM membrane, which permits only protons to pass between an anode and a cathode of the fuel cell. A typical PEM fuel cell may employ polysulfonic-acid-based ionomers and operate in the 50° Celsius (C) to 75° temperature range. Another type of PEM fuel cell may employ a phosphoric-acid-based polybenziamidazole (PBI) membrane that operates in the 150° to 200° temperature range.
At the anode of the PEM fuel cell, diatomic hydrogen (a fuel) ionizes to produce protons that pass through the PEM. The electrons produced by this reaction travel through circuitry that is external to the fuel cell to form an electrical current. At the cathode, oxygen is reduced and reacts with the protons to form water. The anodic and cathodic reactions are described by the following equations:
H2→2H++2e− at the anode of the cell, and Equation 1
O2+4H++4e−→2H2O at the cathode of the cell. Equation 2
A typical fuel cell has a terminal voltage near one volt DC. For purposes of producing much larger voltages, several fuel cells may be assembled together to form a fuel cell stack, an arrangement in which the fuel cells are electrically coupled together in series to form a larger DC voltage (a voltage near 100 volts DC, for example) and to provide more power.
The fuel cell stack may include flow plates (graphite composite or metal plates, as examples) that are stacked one on top of the other, and each plate may be associated with more than one fuel cell of the stack. The plates may include various surface flow channels and orifices to, as examples, route the reactants and products through the fuel cell stack. Several PEMs (each one being associated with a particular fuel cell) may be dispersed throughout the stack between the anodes and cathodes of the different fuel cells. Catalyzed electrically conductive gas diffusion layers (GDLs) may be located on each side of each PEM to form the anode and cathodes of each fuel cell. In this manner, reactant gases from each side of the PEM may leave the flow channels and diffuse through the GDLs to reach the PEM.
In an embodiment of the invention, a technique includes preventing corrosion during one of start up and shut down of a fuel cell. The corrosion prevention includes controlling a load on the fuel cell during the start up/shut down to regulate a voltage of the fuel cell.
In another embodiment of the invention, a system includes a fuel cell stack, a load and a controller. The load is coupled to the fuel cell stack, and the controller controls the load during one of start up and shut down of the fuel cell stack to prevent corrosion of the fuel cell stack.
Advantages and other features of the invention will become apparent from the following drawing, description and claims.
Referring to
The fuel cell stack 12 includes a cathode inlet 16 to receive an incoming oxidant flow from an oxidant source 30 (an air blower or compressor, as examples). The incoming oxidant flow is communicated through the oxidant flow channels of the cathode chamber of the fuel cell stack 12 to promote electrochemical reactions inside the stack 12. The oxidant flow produces a cathode exhaust at a cathode outlet 20 of the fuel cell stack 12.
It is noted that the system 10 is merely an example of one out of many possible embodiments of the invention, which are within the scope of the appended claims. As examples, depending on the particular embodiment of the invention, the anode chamber of the fuel cell stack 12 may be dead-headed (as described above); the anode 18 and/or cathode 20 outlets may be connected to a flare or oxidizer; the anode and/or cathode exhausts may be vented to ambient; etc.
In accordance with some embodiments of the invention, the fuel cell system 10 and load 80 may be portable, or mobile, and more particularly may be (as an example) part of a motor vehicle 5 (a car, truck, airplane, etc.). Thus, the fuel cell system 10 may serve as at least part of the power plant (represented by the load 80) of the vehicle. In other embodiments of the invention, the fuel cell system 10 and load 80 may be part of a stationary system. For example, the system 10 may supply all or part of the power needs of a house, electrical substation, backup power system, etc. Additionally, the system 10 may supply thermal energy to a thermal energy consuming load (water heater, water tank, heat exchanger, etc.), and thus, electrical as well as thermal loads are envisioned. Therefore, many different applications of the system and loads that consume energy from the system are contemplated and are within the scope of the appended claims.
In accordance with some embodiments of the invention, the electrical power that is produced by the fuel cell stack 12 is conditioned into the appropriate form (i.e., the appropriate AC or DC level, depending on the load 80) by load conditioning circuitry 34. The load conditioning circuitry 34 may include, as examples, one or more DC-to-DC regulators, inverters, etc., for purposes of transforming the DC stack level voltage into the appropriate AC or DC level for the load 80.
The system 10 includes a control subsystem 60, which includes various input 62 and output 64 lines for purposes of sensing conditions in the system 10 and controlling the various motors, valves, circuits, etc., of the system 10. As specifically depicted in
As a more specific example, in accordance with some embodiments of the invention, the cell voltage monitoring circuit 40 may monitor selected control cells of the fuel cell stack 12 for purposes of determining a minimum cell voltage and a maximum cell voltage of the stack 12. In other embodiments of the invention, the cell voltage monitoring circuit 40 may monitor all of the cells of the fuel cell stack 12 for purposes of determining the maximum and minimum cell voltages. The cell voltage monitoring circuit 40 may also communicate indications of the voltages of a selected group or, alternatively, the voltages of all the fuel cells to the control subsystem 60. As a specific example, the cell voltage monitoring circuit 40 may be similar in design to the cell voltage monitoring circuit that is described in U.S. Pat. No. 6,140,820, entitled “Measuring Cell Voltages Of A Fuel Cell Stack,” which granted on Aug. 31, 2000. However, the cell voltage monitoring circuit 40 may have other designs, in accordance with other embodiments of the invention. It is noted that the system 10 may not include the cell voltage monitoring circuit 40 in other embodiments of the invention, as further described below.
The control subsystem 60 may disconnect the external load 80 from the system 10 during the start up and shut down of the fuel cell stack 12. In this regard, the control subsystem 60 may open one or more switches 82, which couple the load conditioning circuitry 34 to the terminals of the load 80, for example.
It has been discovered that, if a sufficient load does not exist on the fuel cell stack 12 during its start up and shut down, the cell voltages of the fuel cell stack 12 may approach open cell voltages, which cause corrosion of the fuel cell stack 12. Therefore, in accordance with embodiments of the invention described herein, the system 10 includes switchable loads 50, which the control subsystem 60 selectively connects to the fuel cell stack 12 during the start up and shut down of the stack 12 for purposes of regulating the fuel cell voltages to prevent corrosion. It is noted that the switchable loads 50 illustrate the general concept of controlling the load on the fuel cell stack 12 for purposes of corrosion prevention. The loads 50 may be individual loads that are selectively connected to the terminals of the fuel cell stack 12 in accordance with some embodiments of the invention. However, in accordance with other embodiments of the invention, a single analog controlled load may be connected to the fuel cell stack 12 such that the control subsystem 60 controls the impedance of the analog controlled load to prevent corrosion. Other embodiments are contemplated and are within the scope of the invention.
In some embodiments of the invention, the control subsystem 60 monitors (via communications with the cell voltage monitoring circuit 40) the cell voltages of the fuel cell stack 12 during the start up and shut down of the stack 12 for purposes of regulating the cell voltages so that the voltages are always between a minimum cell voltage threshold (for purposes of maintaining healthy operation of the cells) and an upper cell voltage threshold, which defines a voltage at which corrosion is likely to occur.
Referring to
Referring to
Alternatively, in accordance with other embodiments of the invention, the control subsystem 60 may use the stack voltage (i.e., the voltage across the terminals of the fuel cell stack), instead of the stack current, to determine whether the fuel cell stack has transitioned from the start up state to a normal state of operation. For these embodiments of the invention, the system 10 includes a stack voltage monitoring circuit 310 that is discussed below in connection with
The control subsystem 60 may include, as examples, one or more microprocessors and/or microcontrollers, depending on the particular embodiment of the invention. Additionally, the controller subsystem 60 may include multiple controllers, which control the actions that are described herein. In some embodiments of the invention, the control subsystem 60 may, in general, include a processor (one or more microprocessors and/or microcontrollers, for example) that executes instructions that are stored in a memory of the control subsystem 60 for purposes of performing the technique 90 (
Referring to
More specifically, pursuant to the technique, the system 10 determines (diamond 112) whether the shut down is complete. This determination may be made, for example, by monitoring the stack current (via the sensor 37, for example). Alternatively, as set forth above, the system 10 determines whether the shut down is complete by monitoring the stack voltage and the anode pressure.
If the shut down is complete, the system 10 monitors (block 116) the cell voltages for such purposes as determining the minimum and maximum cell voltage. If the system 10 determines (diamond 120) that the minimum cell voltage is less than a minimum cell voltage threshold, then the system 10 changes (block 128) the load on the fuel cell stack 12 to increase the stack's minimum cell voltage. If the system 10 determines that the minimum cell voltage is greater than the minimum cell voltage threshold, but however, determines that the maximum cell voltage is greater than the maximum cell voltage threshold (consistent with being a voltage that might cause significant corrosion), then the system 10 also changes (block 128) the load on the fuel cell stack 12 to reduce the stack's maximum cell voltage. The above-described control continues until a determination is made pursuant to diamond 112 that the shut down is complete.
For purposes of starting up the fuel cell system, the system 10 may perform a technique 150 that is depicted in
If the system 10 determines (diamond 162) that the start up is complete, and thus, the system 10 is operating in its normal mode of operation, then the technique 150 is terminated. For example, in accordance with some embodiments of the invention, the system 10 may determine that the fuel cell stack 12 is in its normal mode of operation by monitoring the stack current. Alternatively, as set forth above, the system 10 determines whether the fuel cell stack 12 is in its normal mode of operation by monitoring the stack voltage.
If the start up is not yet complete, the system 10 monitors (block 166) the cell voltages to determine at least a minimum cell voltage and a maximum cell voltage. If the minimum cell voltage is less than the minimum cell voltage threshold (diamond 170) or the maximum cell voltage is greater than the maximum cell voltage threshold (diamond 174), the system 10 changes (block 178) the load on the fuel cell stack 12 to increase or decrease the cell voltages to regulate the cell voltages in the desired range; and control returns to block 158.
Other embodiments are contemplated and are within the scope of the appended claims. For example,
Therefore, in accordance with other embodiments of the invention, the system 300 may monitor the stack voltage during the start up and shut down of the fuel cell stack 12 for purposes of preventing corrosion. More specifically, the control subsystem 60 may be in communication with the stack voltage monitoring circuit 320 for purposes of continually monitoring the stack voltage. In accordance with some embodiments of the invention, from the stack voltage, the control subsystem 60 determines an average cell voltage and controls the load on the fuel cell stack 12 during its start up and shut down based on the average cell voltage for purposes of preventing corrosion.
As a more specific example, the system 300 may perform a technique 200 that is disclosed in
Other embodiments of the fuel cell system and corrosion prevention techniques are contemplated and are within the scope of the appended claims.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
This application claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 60/805,655, entitled, “STACK DISCHARGE PROTOCOL,” which was filed on Jun. 23, 2006, and is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60805655 | Jun 2006 | US |