Preventing hazard flushes in an instruction sequencing unit of a multi-slice processor

Information

  • Patent Grant
  • 10761854
  • Patent Number
    10,761,854
  • Date Filed
    Tuesday, April 19, 2016
    8 years ago
  • Date Issued
    Tuesday, September 1, 2020
    4 years ago
Abstract
Preventing hazard flushes in an instruction sequencing unit of a multi-slice processor including receiving a load instruction in a load reorder queue, wherein the load instruction is an instruction to load data from a memory location; subsequent to receiving the load instruction, receiving a store instruction in a store reorder queue, wherein the store instruction is an instruction to store data in the memory location; determining that the store instruction causes a hazard against the load instruction; preventing a flush of the load reorder queue based on a state of the load instruction; and re-executing the load instruction.
Description
BACKGROUND
Field of the Invention

The field of the invention is data processing, or, more specifically, methods, apparatus, and products for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor.


Description of Related Art

The development of the EDVAC computer system of 1948 is often cited as the beginning of the computer era. Since that time, computer systems have evolved into extremely complicated devices. Today's computers are much more sophisticated than early systems such as the EDVAC. Computer systems typically include a combination of hardware and software components, application programs, operating systems, processors, buses, memory, input/output devices, and so on. As advances in semiconductor processing and computer architecture push the performance of the computer higher and higher, more sophisticated computer software has evolved to take advantage of the higher performance of the hardware, resulting in computer systems today that are much more powerful than just a few years ago.


One area of computer system technology that has advanced is computer processors. As the number of computer systems in data centers and the number of mobile computing devices has increased, the need for more efficient computer processors has also increased. Speed of operation and power consumption are just two areas of computer processor technology that affect efficiency of computer processors.


SUMMARY

Methods and apparatus for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor are disclosed in this specification. Preventing hazard flushes in an instruction sequencing unit of a multi-slice processor includes receiving a load instruction in a load reorder queue, wherein the load instruction is an instruction to load data from a memory location; subsequent to receiving the load instruction, receiving a store instruction in a store reorder queue, wherein the store instruction is an instruction to store data in the memory location; determining that the store instruction causes a hazard against the load instruction; preventing a flush of the load reorder queue based on a state of the load instruction; and re-executing the load instruction.


The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular descriptions of exemplary embodiments of the invention as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of exemplary embodiments of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 sets forth a block diagram of an example system configured for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor according to embodiments of the present invention.



FIG. 2 sets forth a block diagram of a portion of a multi-slice processor according to embodiments of the present invention.



FIG. 3 sets forth a block diagram of a portion of a load/store slice of a multi-slice processor according to embodiments of the present invention.



FIG. 4 sets forth a flow chart illustrating an exemplary method for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor according to embodiments of the present invention.



FIG. 5 sets forth a flow chart illustrating an exemplary method for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor according to embodiments of the present invention.



FIG. 6 sets forth a flow chart illustrating an exemplary method for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor according to embodiments of the present invention.



FIG. 7 sets forth a flow chart illustrating an exemplary method for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor according to embodiments of the present invention.





DETAILED DESCRIPTION

Exemplary methods and apparatus for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor in accordance with the present invention are described with reference to the accompanying drawings, beginning with FIG. 1. FIG. 1 sets forth a block diagram of an example system configured for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor according to embodiments of the present invention. The system of FIG. 1 includes an example of automated computing machinery in the form of a computer (152).


The computer (152) of FIG. 1 includes at least one computer processor (156) or ‘CPU’ as well as random access memory (168) (‘RAM’) which is connected through a high speed memory bus (166) and bus adapter (158) to processor (156) and to other components of the computer (152).


The example computer processor (156) of FIG. 1 may be implemented as a multi-slice processor. The term ‘multi-slice’ as used in this specification refers to a processor having a plurality of similar or identical sets of components, where each set may operate independently of all the other sets or in concert with the one or more of the other sets. The multi-slice processor (156) of FIG. 1, for example, includes several execution slices (‘ES’) and several load/store slices (‘LSS’)—where load/store slices may generally be referred to as load/store units. Each execution slice may be configured to provide components that support execution of instructions: an issue queue, general purpose registers, a history buffer, an arithmetic logic unit (including a vector scalar unit, a floating point unit, and others), and the like. Each of the load/store slices may be configured with components that support data movement operations such as loading of data from cache or memory or storing data in cache or memory. In some embodiments, each of the load/store slices includes a data cache. The load/store slices are coupled to the execution slices through a results bus. In some embodiments, each execution slice may be associated with a single load/store slice to form a single processor slice. In some embodiments, multiple processor slices may be configured to operate together.


The example multi-slice processor (156) of FIG. 1 may also include, in addition to the execution and load/store slices, other processor components. In the system of FIG. 1, the multi-slice processor (156) includes fetch logic, dispatch logic, and branch prediction logic. Further, although in some embodiments each load/store slice includes cache memory, the multi-slice processor (156) may also include cache accessible by any or all of the processor slices.


Although the multi-slice processor (156) in the example of FIG. 1 is shown to be coupled to RAM (168) through a front side bus (162), a bus adapter (158) and a high speed memory bus (166), readers of skill in the art will recognize that such configuration is only an example implementation. In fact, the multi-slice processor (156) may be coupled to other components of a computer system in a variety of configurations. For example, the multi-slice processor (156) in some embodiments may include a memory controller configured for direct coupling to a memory bus (166). In some embodiments, the multi-slice processor (156) may support direct peripheral connections, such as PCIe connections and the like.


Stored in RAM (168) in the example computer (152) is a data processing application (102), a module of computer program instructions that when executed by the multi-slice processor (156) may provide any number of data processing tasks. Examples of such data processing applications may include a word processing application, a spreadsheet application, a database management application, a media library application, a web server application, and so on as will occur to readers of skill in the art. Also stored in RAM (168) is an operating system (154). Operating systems useful in computers configured for operation of a multi-slice processor according to embodiments of the present invention include UNIX™, Linux™, Microsoft Windows™, AIX™, IBM's z/OS™, and others as will occur to those of skill in the art. The operating system (154) and data processing application (102) in the example of FIG. 1 are shown in RAM (168), but many components of such software typically are stored in non-volatile memory also, such as, for example, on a disk drive (170).


The computer (152) of FIG. 1 includes disk drive adapter (172) coupled through expansion bus (160) and bus adapter (158) to processor (156) and other components of the computer (152). Disk drive adapter (172) connects non-volatile data storage to the computer (152) in the form of disk drive (170). Disk drive adapters useful in computers configured for operation of a multi-slice processor according to embodiments of the present invention include Integrated Drive Electronics (‘IDE’) adapters, Small Computer System Interface (‘SCSI’) adapters, and others as will occur to those of skill in the art. Non-volatile computer memory also may be implemented for as an optical disk drive, electrically erasable programmable read-only memory (so-called ‘EEPROM’ or ‘Flash’ memory), RAM drives, and so on, as will occur to those of skill in the art.


The example computer (152) of FIG. 1 includes one or more input/output (‘I/O’) adapters (178). I/O adapters implement user-oriented input/output through, for example, software drivers and computer hardware for controlling output to display devices such as computer display screens, as well as user input from user input devices (181) such as keyboards and mice. The example computer (152) of FIG. 1 includes a video adapter (209), which is an example of an I/O adapter specially designed for graphic output to a display device (180) such as a display screen or computer monitor. Video adapter (209) is connected to processor (156) through a high speed video bus (164), bus adapter (158), and the front side bus (162), which is also a high speed bus.


The exemplary computer (152) of FIG. 1 includes a communications adapter (167) for data communications with other computers (182) and for data communications with a data communications network (100). Such data communications may be carried out serially through RS-232 connections, through external buses such as a Universal Serial Bus (‘USB’), through data communications networks such as IP data communications networks, and in other ways as will occur to those of skill in the art. Communications adapters implement the hardware level of data communications through which one computer sends data communications to another computer, directly or through a data communications network. Examples of communications adapters useful in computers configured for operation of a multi-slice processor according to embodiments of the present invention include modems for wired dial-up communications, Ethernet (IEEE 802.3) adapters for wired data communications, and 802.11 adapters for wireless data communications.


The arrangement of computers and other devices making up the exemplary system illustrated in FIG. 1 are for explanation, not for limitation. Data processing systems useful according to various embodiments of the present invention may include additional servers, routers, other devices, and peer-to-peer architectures, not shown in FIG. 1, as will occur to those of skill in the art. Networks in such data processing systems may support many data communications protocols, including for example TCP (Transmission Control Protocol), IP (Internet Protocol), HTTP (HyperText Transfer Protocol), WAP (Wireless Access Protocol), HDTP (Handheld Device Transport Protocol), and others as will occur to those of skill in the art. Various embodiments of the present invention may be implemented on a variety of hardware platforms in addition to those illustrated in FIG. 1.


For further explanation, FIG. 2 sets forth a block diagram of a portion of a multi-slice processor according to embodiments of the present invention. The multi-slice processor in the example of FIG. 2 includes a dispatch network (202). The dispatch network (202) includes logic configured to dispatch instructions for execution among execution slices.


The multi-slice processor in the example of FIG. 2 also includes a number of execution slices (204a, 204b-204n). Each execution slice includes general purpose registers (206) and a history buffer (208). The general purpose registers and history buffer may sometimes be referred to as the mapping facility, as the registers are utilized for register renaming and support logical registers.


The general purpose registers (206) are configured to store the youngest instruction targeting a particular logical register and the result of the execution of the instruction. A logical register is an abstraction of a physical register that enables out-of-order execution of instructions that target the same physical register.


When a younger instruction targeting the same particular logical register is received, the entry in the general purpose register is moved to the history buffer, and the entry in the general purpose register is replaced by the younger instruction. The history buffer (208) may be configured to store many instructions targeting the same logical register. That is, the general purpose register is generally configured to store a single, youngest instruction for each logical register while the history buffer may store many, non-youngest instructions for each logical register.


Each execution slice (204) of the multi-slice processor of FIG. 2 also includes an execution reservation station (210). The execution reservation station (210) may be configured to issue instructions for execution. The execution reservation station (210) may include an issue queue. The issue queue may include an entry for each operand of an instruction. The execution reservation station may issue the operands for execution by an arithmetic logic unit or to a load/store slice (222a, 222b, 222c) via the results bus (220).


The arithmetic logic unit (212) depicted in the example of FIG. 2 may be composed of many components, such as add logic, multiply logic, floating point units, vector/scalar units, and so on. Once an arithmetic logic unit executes an operand, the result of the execution may be stored in the result buffer (214) or provided on the results bus (220) through a multiplexer (216).


The results bus (220) may be configured in a variety of manners and be of composed in a variety of sizes. In some instances, each execution slice may be configured to provide results on a single bus line of the results bus (220). In a similar manner, each load/store slice may be configured to provide results on a single bus line of the results bus (220). In such a configuration, a multi-slice processor with four processor slices may have a results bus with eight bus lines—four bus lines assigned to each of the four load/store slices and four bus lines assigned to each of the four execution slices. Each of the execution slices may be configured to snoop results on any of the bus lines of the results bus. In some embodiments, any instruction may be dispatched to a particular execution unit and then by issued to any other slice for performance. As such, any of the execution slices may be coupled to all of the bus lines to receive results from any other slice. Further, each load/store slice may be coupled to each bus line in order to receive an issue load/store instruction from any of the execution slices. Readers of skill in the art will recognize that many different configurations of the results bus may be implemented.


The multi-slice processor in the example of FIG. 2 also includes a number of load/store slices (222a, 222b-222n). Each load/store slice includes a queue (224), a multiplexer (228), a data cache (232), and formatting logic (226), among other components described below with regard to FIG. 3. The queue receives load and store operations to be carried out by the load/store slice (222). The formatting logic (226) formats data into a form that may be returned on the results bus (220) to an execution slice as a result of a load or store instruction.


The example multi-slice processor of FIG. 2 may be configured for flush and recovery operations. A flush and recovery operation is an operation in which the registers (general purpose register and history buffer) of the multi-slice processor are effectively ‘rolled back’ to a previous state. The term ‘restore’ and ‘recover’ may be used, as context requires in this specification, as synonyms. Flush and recovery operations may be carried out for many reasons, including missed branch predictions, exceptions, and the like. Consider, as an example of a typical flush and recovery operation, that a dispatcher of the multi-slice processor dispatches over time and in the following order: an instruction A targeting logical register 5, an instruction B targeting logical register 5, and an instruction C targeting logical register 5. At the time instruction A is dispatched, the instruction parameters are stored in the general purpose register entry for logical register 5. Then, when instruction B is dispatched, instruction A is evicted to the history buffer (all instruction parameters are copied to the history buffer, including the logical register and the identification of instruction B as the evictor of instruction A), and the parameters of instruction B are stored in the general purpose register entry for logical register 5. When instruction C is dispatched, instruction B is evicted to the history buffer and the parameters of instruction C are stored in the general purpose register entry for logical register 5. Consider, now, that a flush and recovery operation of the registers is issued in which the dispatch issues a flush identifier matching the identifier of instruction C. In such an example, flush and recovery includes discarding the parameters of instruction C in the general purpose register entry for logical register 5 and moving the parameters of instruction B from the history buffer for instruction B back into the entry of general purpose register for logical register 5.


During the flush and recovery operation, in prior art processors, the dispatcher was configured to halt dispatch of new instructions to an execution slice. Such instructions may be considered either target or source instructions. A target instruction is an instruction that targets a logical register for storage of result data. A source instruction by contrast has, as its source, a logical register. A target instruction, when executed, will result in data stored in an entry of a register file while a source instruction utilizes such data as a source for executing the instruction. A source instruction, while utilizing one logical register as its source, may also target another logical register for storage of the results of instruction. That is, with respect to one logical register, an instruction may be considered a source instruction and with respect to another logical register, the same instruction may be considered a target instruction.


The multi-slice processor in the example of FIG. 2 also includes an instruction sequencing unit (240). While depicted as a single unit, each of the plurality of execution slices may include a respective instruction sequencing unit similar to instruction sequencing unit (240). Instruction sequencing unit (240) may take dispatched instructions and check dependencies of the instructions to determine whether all older instructions with respect to a current instruction have delivered, or may predictably soon deliver, results of these older instructions from which the current instruction is dependent so that the current instruction may execute correctly. If all dependencies to a current instruction are satisfied, then a current instruction may be determined to be ready to issue, and may consequently be issued—regardless of a program order of instructions as determined by an ITAG. Such issuance of instructions may be referred to as an “out-of-order” execution, and the multi-slice processor may be considered an out-of-order machine.


In some cases, a load/store unit receiving an issued instruction, such as a load/store slice, may not yet be able to handle the instruction, and the instruction sequencing unit (240) may keep the instruction queued until such time as the load/store slice may handle the instruction. After the instruction is issued, the instruction sequencing unit (240) may track progress of the instruction based at least in part on signals received from a load/store slice.


For further explanation, FIG. 3 sets forth a block diagram depicting an expanded view of a load/store slice (222a) implementing architectural components that include a load/store access queue (LSAQ) (224), a load reorder queue (LRQ) (304), a load miss queue (LMQ) (308), a store reorder queue (SRQ) (306), a data cache (232), among other components.


In previous systems, if a load/store unit received an instruction from an instruction sequencing unit, and the load/store unit was unable to handle the instruction for some reason, then the load/store unit would notify the instruction sequencing unit that the instruction was being rejected and the load/store unit would discard information related to the rejected instruction. In which case, the instruction sequencing unit would continue maintaining information to track and maintain the rejected instruction until the instruction is resent to the load/store unit.


The load/store slice (222a), by contrast to the above previous system, is configured to determine a rejection condition for an instruction received from an instruction sequencing unit, however, the load/store slice (222a), instead of sending a reject signal to the instruction sequencing unit, maintains tracking and handling of the instruction—including information usable to relaunch or reissue the instruction—until the rejection condition is resolved. Further, an entry in the load reorder queue (304) or the store reorder queue (306) may be configured to maintain information for tracking an instruction that would otherwise have been rejected and removed from the load reorder queue (304). For example, if the load/store slice (222a) determines that a rejection condition exists for a given load or store instruction, then logic within the load/store slice may notify the load reorder queue (304) or the store reorder queue (306) to place the instruction in a sleep state for a given number of cycles, or to place the instruction in a sleep state until notified to awaken, or to immediately reissue the instruction, among other notifications to perform other operations.


In this way, the load/store slice (222a) may save cycles that would otherwise be lost if the instruction were rejected to the instruction sequencing unit because the load/store slice (222a) may more efficiently and quickly reissue the instruction when the rejection condition is resolved in addition to more quickly detecting resolution of a rejection condition than an instruction sequencing unit. For example, if the load/store slice (222a) determines that an instruction that is in a sleep state may be reissued in response to determining that one or more rejection conditions have been resolved preventing the instruction from completing, then the load/store store slice may notify the load reorder queue (304) or the store reorder queue (306) to relaunch or reissue the instruction immediately or after some number of cycles. The number of cycles may depend upon a type of rejection condition or upon other factors affecting reissue or relaunch of the instruction. In this example, the load reorder queue (304) or the store reorder queue (306) may reissue or relaunch an instruction by providing the load/store access queue (224) with information to reissue the instruction, where the load reorder queue (304) or the store reorder queue (306) may communicate with the load/store access queue (224) along line (314).


Another improvement that results from the load/store slice (222a) maintaining an instruction if a rejection condition is determined is that the load/store slice (222a) uses fewer resources, such as logic and circuitry for latches and other components, to maintain the instruction than an instruction sequencing unit. In other words, given that the instruction sequencing unit may rely on the load/store slice (222a) in handling the instruction to completion, the instruction sequencing unit may free resources once the instruction is provided to the load/store slice (222a).


Further, the instruction sequencing unit (240), based at least in part on communications with the load/store slice (222a), may determine when and whether to wake instructions that may be dependent on a current instruction being handled by the load/store slice (222a). Therefore, if the load/store slice (222a) determines that a rejection condition exists, the load/store slice (222a) delays a notification to the instruction sequencing unit (240) to awaken dependent instructions to prevent the instruction sequencing unit (240) from issuing dependent instructions that are subsequently unable to finish due to lack of availability of results from a current instruction. In this way, the instruction sequencing unit (240) may avoid wasting execution cycles reissuing dependent instructions that are unable to finish.


For example, the load/store slice (222a) may communicate with the instruction sequencing unit (240) through the generation of signals indicating, at different points in handling a load instruction, that a load instruction is to be reissued or that data for a load instruction is valid. In some cases, in response to the instruction sequencing unit (240) receiving a signal from the load/store slice (222a) that a given instruction is to be reissued, the instruction sequencing unit (240) may awaken instructions dependent upon the given instruction with the expectation that the given instruction, after being reissued, is going to finish and provide valid data.


The load/store slice (222a) may also retrieve data from any tier of a memory hierarchy, beginning with a local data cache (232), and extending as far down in the hierarchy as needed to find requested data. The requested data, when received, may be provided to general purpose registers, virtual registers, or to some other destination. The received data may also be stored in a data cache (232) for subsequent access. The load/store slice (222a) may also manage translations of effective addresses to real addresses to communicate with different levels of memory hierarchy.


A store reorder queue (306) may include entries for tracking the cache operations for sequential consistency and may reissue operations into the load/store pipeline for execution independent of an execution slice.


A load miss queue (308) may issue requests for data to one or more data storage devices of a multi-tiered memory hierarchy, where a request for data may correspond to a load instruction for the data.


Responsive to the data being returned along the line (302) to the load/store slice (222a), the data may be delivered to a destination such as the results bus (220 of FIG. 2) to be loaded into, for example, a general purpose register—where the delivery of the data may be from the data cache (232) or over the line (310). The line (310) bypasses the data cache (232) and allows implementation of a critical data forwarding path. The load reorder queue (304) may also use line (312) to notify an instruction sequencing unit, or some other logical component, that the data is available.


A load reorder queue (304) may track execution of cache operations issued to the load/store slice (222a) and includes entries for tracking cache operations for sequential consistency, among other attributes. The load reorder queue (304) may also reissue operations into the load/store pipeline for execution, which provides operation that is independent of the execution slices.


For further explanation, FIG. 4 sets forth a flow chart illustrating an exemplary method for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor. The method of FIG. 4 may be carried out by a multi-slice processor similar to that in the examples of FIGS. 1-3. Such a multi-slice processor may include an instruction sequencing unit (240), and a plurality of load/store slices (220a-220n), where each of the load/store slices may implement a load/store access queue (224), a load reorder queue (304), and a store reorder queue (306), as described above with regard to FIG. 3.


The method of FIG. 4 includes receiving (402) a load instruction in a load reorder queue (304), wherein the load instruction is an instruction to load data from a memory location. Receiving (402) a load instruction in a load reorder queue (304), wherein the load instruction is an instruction to load data from a memory location may be carried out by issuing, from the load/store unit, the load instruction and placing the load instruction in the load reorder queue (304). A load instruction is an instruction to read data from a memory location, and copy that data to a register, such as the general purpose register.


The method of FIG. 4 also includes, subsequent to receiving the load instruction, receiving (404) a store instruction in a store reorder queue (306), wherein the store instruction is an instruction to store data in the memory location. Receiving a store instruction in a store reorder queue (306), wherein the store instruction is an instruction to store data in the memory location may be carried out by issuing, from the load/store unit, the store instruction and placing the store instruction in the store reorder queue (306). The store instruction is an instruction to read data from a register, such as a general purpose register, and copy that data to a memory location.


The method of FIG. 4 also includes determining (406) that the store instruction causes a hazard against the load instruction. Determining that the store instruction causes a hazard against the load instruction may be carried out by detecting a store-hit-load hazard based on receiving an older store instruction targeting a memory location and determining that a younger load instruction resides in the load reorder queue (304) that targets the same memory location.


The store instruction may target data that the load instruction is attempting to read from the memory location. However, if the store instruction has not stored the targeted data into the memory location, the load instruction may read stale data (i.e., data stored by a previous instruction) from the memory location. This condition will cause the instruction sequencing unit (240) to detect a store-hit-load hazard. Further, load and store instructions may be dependent on multiple other load and store instructions, and any one of the dependencies may trigger a hazard.


The method of FIG. 4 also includes preventing (408) a flush of the load reorder queue (304) based on a state of the load instruction. Preventing a flush of the load reorder queue (304) based on a state of the load instruction may be carried out by obtaining the state of the load instruction. The state of the load instruction refers to a level of completeness of the load instruction. Upon first issuing or waking up, the load instruction may attempt to retrieve the target data from a memory location. This may include attempting to read the data from the L1 cache. If the cacheline is not currently in the L1 cache, then a fetching mechanism (e.g., the load miss queue (308)) may be employed to fetch the data from other memory. While waiting for the fetching mechanism to return the data, the load instruction is in a waiting state.


Preventing the flush of a load instruction may be carried out by avoiding the processes that cause a flush. A flush of a load instruction may be carried out by incrementing an age indicator of the corresponding store instruction. This may cause the instruction sequencing unit to flush load instructions in the load reorder queue (304) that are younger than the store instruction. A flush of a load instruction may also be carried out by obtaining the age of the all load instructions causing the hazard and flushing the oldest load instruction. Flushing the load replaces the incorrect load result in the general purpose register and re-executes instructions that were dependent on the result of the load instruction that may have previously executed. Consequently, flushing the load instruction may delay the execution of the load instruction and any other instruction dependent upon that load.


The method of FIG. 4 also includes re-executing (410) the load instruction. Re-executing the load instruction may be carried out by re-executing the load instruction without having the load instruction re-issued to the load reorder queue (304). Specifically, re-executing (410) the load instruction may be carried out by waking up the load instruction previously placed in the load reorder queue (304) and executing the load instruction from the current state of the load instruction.


For further explanation, FIG. 5 sets forth a flow chart illustrating an exemplary method for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor according to embodiments of the present invention that includes receiving (402) a load instruction in a load reorder queue (304), wherein the load instruction is an instruction to load data from a memory location; subsequent to receiving the load instruction, receiving (404) a store instruction in a store reorder queue (306), wherein the store instruction is an instruction to store data in the memory location; determining (406) that the store instruction causes a hazard against the load instruction; preventing (408) a flush of the load reorder queue (304) based on a state of the load instruction; and re-executing (410) the load instruction.


The method of FIG. 5 differs from the method of FIG. 4, however, in that the method of FIG. 5 further includes forwarding (502) the data targeted by the store instruction using a store-forwarding mechanism. Forwarding (502) the data targeted by the store instruction using a store-forwarding mechanism may be carried out by sending the data targeted by the store instruction directly to the register entry targeted by the load instruction. Such a store-forwarding mechanism may bypass storing the target data in the memory location targeted by either the store instruction or load instruction.


For further explanation, FIG. 6 sets forth a flow chart illustrating a further exemplary method for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor according to embodiments of the present invention that includes receiving (402) a load instruction in a load reorder queue (304), wherein the load instruction is an instruction to load data from a memory location; subsequent to receiving the load instruction, receiving (404) a store instruction in a store reorder queue (306), wherein the store instruction is an instruction to store data in the memory location; determining (406) that the store instruction causes a hazard against the load instruction; preventing (408) a flush of the load reorder queue (304) based on a state of the load instruction; and re-executing (610) the load instruction.


The method of FIG. 6 differs from the method of FIG. 4, however, in that preventing (408) a flush of the load reorder queue (304) based on a state of the load instruction includes determining (602) that the load instruction has not finished and has not sent results to a general purpose register; and setting (604) a prevent critical data forwarding flag in the load reorder queue (304). Determining (602) that the load instruction has not finished and has not sent results to a general purpose register may be carried out by querying the load miss queue (306) to determine whether the access request for the target memory location is pending. Determining (602) that the load instruction has not finished and has not sent results to a general purpose register may also be carried out by inspecting the target register entry to determine whether the load instruction has placed data in the register entry.


Setting (604) a prevent critical data forwarding flag in the load reorder queue (304) may be carried out by altering a bit stored in the load reorder queue (304) to indicate that no critical data forwarding is to be performed for the associated load instruction. Setting the prevent critical data forwarding flag prevents the load reorder queue (304) entry for the load instructions from waking up for a period of time, such as a single cycle. During the following period of time, the prevent critical data forwarding flag will be reset and the load instruction will be woken up. The prevent critical data forwarding flag may be stored in the load reorder queue (304).


The method of FIG. 6 also differs from the method of FIG. 4 in that re-executing (610) the load instruction includes performing (606) a load-hit-store check on the store reorder queue (306). Performing (606) a load-hit-store check on the store reorder queue (306) may be carried out by detecting that the store instruction is in the store reorder queue (306) and that load instruction has re-executed. This may cause a load-hit-store hazard. In response to the load-hit-store hazard, the instruction sequencing unit may forward the data targeted by the store instruction to the load instruction using a store-forwarding mechanism. Alternatively, the instruction sequencing unit may reject the load instruction and re-execute the load instruction if the data is unavailable for store-forwarding.


For further explanation, FIG. 7 sets forth a flow chart illustrating a further exemplary method for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor according to embodiments of the present invention that includes receiving (402) a load instruction in a load reorder queue (304), wherein the load instruction is an instruction to load data from a memory location; subsequent to receiving the load instruction, receiving (404) a store instruction in a store reorder queue (306), wherein the store instruction is an instruction to store data in the memory location; determining (406) that the store instruction causes a hazard against the load instruction; preventing (408) a flush of the load reorder queue (304) based on a state of the load instruction; and re-executing (410) the load instruction.


The method of FIG. 7 differs from the method of FIG. 4, however, in that the method of FIG. 7 further includes receiving (702) a subsequent store instruction in the store reorder queue (306), wherein the subsequent store instruction is an instruction to store the data in the memory location. Receiving (702) a subsequent store instruction in the store reorder queue (306), wherein the subsequent store instruction is an instruction to store the data in the memory location may be carried out by issuing, from the load/store unit, the subsequent store instruction and placing the subsequent store instruction in the store reorder queue (306).


The method of FIG. 7 further includes determining (704) that the subsequent store instruction causes a subsequent hazard against the load instruction. Determining (704) that the subsequent store instruction causes a subsequent hazard against the load instruction may be carried out by determining that a load targeting the same memory location has previously been issued, as discussed above in step 406.


More than one store instruction targeting the same memory location may be received after the load instruction has issued. In such a case, upon receiving each store instruction, the hazard detection mechanism is employed to determine the existence of a store-hit-load hazard. If a hazard is detected, flushing the load instruction may be avoided based on the state of the load instruction.


The method of FIG. 7 further includes flushing (706) a portion of the load reorder queue (304) based on the subsequent hazard. Flushing (706) a portion of the load reorder queue (304) based on the subsequent hazard may be carried out by incrementing an age indicator of the corresponding store instruction. This may cause the instruction sequencing unit to flush load instructions in the load reorder queue (304) that are younger than the store instruction. A flush of a load instruction may also be carried out by obtaining the age of the all load instructions causing the hazard and flushing the oldest load instruction. Flushing the load replaces the incorrect load result in the general purpose register and re-executes instructions that were dependent on the result of the load instruction that may have previously executed.


Flushing (706) a portion of the load reorder queue (304) based on the subsequent hazard may further be in response to determining that the state of the load instruction does not support preventing the flush of the load instruction. For example, the load instruction may have, at the time the hazard is detected, completed fetching the target data from the L1 cache. As a result, the load instruction will have fetched stale data because the store has not placed the target data into the memory location. Therefore, the instruction sequencing unit will perform a flush of the load instruction.


Exemplary embodiments of the present invention are described largely in the context of a fully functional computer system for preventing hazard flushes in an instruction sequencing unit of a multi-slice processor. Readers of skill in the art will recognize, however, that the present invention also may be embodied in a computer program product disposed upon computer readable storage media for use with any suitable data processing system. Such computer readable storage media may be any storage medium for machine-readable information, including magnetic media, optical media, or other suitable media. Examples of such media include magnetic disks in hard drives or diskettes, compact disks for optical drives, magnetic tape, and others as will occur to those of skill in the art. Persons skilled in the art will immediately recognize that any computer system having suitable programming means will be capable of executing the steps of the method of the invention as embodied in a computer program product. Persons skilled in the art will recognize also that, although some of the exemplary embodiments described in this specification are oriented to software installed and executing on computer hardware, nevertheless, alternative embodiments implemented as firmware or as hardware are well within the scope of the present invention.


The present invention may be a system, a method, and/or a computer program product. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.


The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.


Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.


Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.


Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.


These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.


The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.


The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.


It will be understood from the foregoing description that modifications and changes may be made in various embodiments of the present invention without departing from its true spirit. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present invention is limited only by the language of the following claims.

Claims
  • 1. A method of preventing hazard flushes in an instruction sequencing unit, the method comprising: receiving a load instruction in a load reorder queue, wherein the load instruction is an instruction to load data from a memory location;subsequent to receiving the load instruction, receiving a store instruction in a store reorder queue, wherein the store instruction is an instruction to store data in the memory location;determining that the store instruction causes a hazard against the load instruction;preventing a flush of the load reorder queue based on a state of the load instruction and maintaining the load instruction, wherein the state of the load instruction is a level of completeness of the load instruction, wherein preventing the flush includes setting a prevent critical data forwarding flag in the load reorder queue, and wherein the prevent critical data forwarding flag indicates that no critical data forwarding is to be performed for the associated load instruction; andre-executing the load instruction, wherein a load-hit-store check is performed on the store reorder queue by determining whether the store instruction is in the store reorder queue and that load instruction has re-executed.
  • 2. The method of claim 1 further comprising: forwarding the data targeted by the store instruction using a store-forwarding mechanism.
  • 3. The method of claim 1, wherein preventing the flush of the load reorder queue based on the state of the load instruction comprises: determining that the load instruction has not finished and has not sent results to a general purpose register.
  • 4. The method of claim 1 further comprising: receiving a subsequent store instruction in the store reorder queue, wherein the subsequent store instruction is an instruction to store the subsequent store data in the memory location;determining that the subsequent store instruction causes a subsequent hazard against the load instruction; andflushing a portion of the load reorder queue based on the subsequent hazard.
  • 5. The method of claim 1, wherein the hazard instructs the instruction sequencing unit to perform the flush of a portion of the load reorder queue.
  • 6. The method of claim 1, wherein setting the prevent critical data forwarding flag prevents the load instruction received in the load reorder queue from waking up for a single cycle.
  • 7. A multi-slice processor comprising: an instruction sequencing unit, a plurality of execution slices, and a plurality of load/store slices, wherein the multi-slice processor is configured to carry out: receiving a load instruction in a load reorder queue, wherein the load instruction is an instruction to load data from a memory location;subsequent to receiving the load instruction, receiving a store instruction in a store reorder queue, wherein the store instruction is an instruction to store data in the memory location;determining that the store instruction causes a hazard against the load instruction;preventing a flush of the load reorder queue based on a state of the load instruction and maintaining the load instruction, wherein the state of the load instruction is a level of completeness of the load instruction, wherein preventing the flush includes setting a prevent critical data forwarding flag in the load reorder queue, and wherein the prevent critical data forwarding flag indicates that no critical data forwarding is to be performed for the associated load instruction; andre-executing the load instruction, wherein a load-hit-store check is performed on the store reorder queue by determining whether the store instruction is in the store reorder queue and that load instruction has re-executed.
  • 8. The multi-slice processor of claim 7, wherein the multi-slice processor is further configured to carry out: forwarding the data targeted by the store instruction using a store-forwarding mechanism.
  • 9. The multi-slice processor of claim 7, wherein preventing the flush of the load reorder queue based on the state of the load instruction comprises: determining that the load instruction has not finished and has not sent results to a general purpose register.
  • 10. The multi-slice processor of claim 7, wherein the multi-slice processor is further configured to carry out: receiving a subsequent store instruction in the store reorder queue, wherein the subsequent store instruction is an instruction to store the subsequent store data in the memory location;determining that the subsequent store instruction causes a subsequent hazard against the load instruction; andflushing a portion of the load reorder queue based on the subsequent hazard.
  • 11. The multi-slice processor of claim 7, wherein the hazard instructs the instruction sequencing unit to perform the flush of a portion of the load reorder queue.
  • 12. The multi-slice processor of claim 7, wherein setting the prevent critical data forwarding flag prevents the load instruction received in the load reorder queue from waking up for a single cycle.
  • 13. An apparatus comprising: a multi-slice processor comprising an instruction sequencing unit, a plurality of execution slices, and a plurality of load/store slices, and memory connected through a bus to the multi-slice processor, wherein the multi-slice processor is configured to carry out: receiving a load instruction in a load reorder queue, wherein the load instruction is an instruction to load data from a memory location;subsequent to receiving the load instruction, receiving a store instruction in a store reorder queue, wherein the store instruction is an instruction to store data in the memory location;determining that the store instruction causes a hazard against the load instruction;preventing a flush of the load reorder queue based on a state of the load instruction and maintaining the load instruction, wherein the state of the load instruction is a level of completeness of the load instruction, wherein preventing the flush includes setting a prevent critical data forwarding flag in the load reorder queue, and wherein the prevent critical data forwarding flag indicates that no critical data forwarding is to be performed for the associated load instruction; andre-executing the load instruction, wherein a load-hit-store check is performed on the store reorder queue by determining whether the store instruction is in the store reorder queue and that load instruction has re-executed.
  • 14. The apparatus of claim 13, wherein the multi-slice processor is further configured to carry out: forwarding the data targeted by the store instruction using a store-forwarding mechanism.
  • 15. The apparatus of claim 13, wherein preventing the flush of the load reorder queue based on the state of the load instruction comprises: determining that the load instruction has not finished and has not sent results to a general purpose register.
  • 16. The apparatus of claim 13, wherein the multi-slice processor is further configured to carry out: receiving a subsequent store instruction in the store reorder queue, wherein the subsequent store instruction is an instruction to store the subsequent store data in the memory location;determining that the subsequent store instruction causes a subsequent hazard against the load instruction; andflushing a portion of the load reorder queue based on the subsequent hazard.
  • 17. The apparatus of claim 13, wherein setting the prevent critical data forwarding flag prevents the load instruction received in the load reorder queue from waking up for a single cycle.
US Referenced Citations (267)
Number Name Date Kind
4858113 Saccardi Aug 1989 A
5055999 Frank et al. Oct 1991 A
5095424 Woffinden et al. Mar 1992 A
5353426 Patel et al. Oct 1994 A
5418922 Liu May 1995 A
5471593 Branigin Nov 1995 A
5475856 Kogge Dec 1995 A
5553305 Gregor et al. Sep 1996 A
5630149 Bluhm May 1997 A
5664215 Burgess et al. Sep 1997 A
5680597 Kumar et al. Oct 1997 A
5724536 Abramson et al. Mar 1998 A
5809522 Novak et al. Sep 1998 A
5809530 Samra et al. Sep 1998 A
5822602 Thusoo Oct 1998 A
5897651 Cheong et al. Apr 1999 A
5913048 Cheong et al. Jun 1999 A
5996068 Dwyer, III et al. Nov 1999 A
6016543 Suzuki Jan 2000 A
6021485 Feiste Feb 2000 A
6026478 Dowling Feb 2000 A
6044448 Agrawal et al. Mar 2000 A
6073215 Snyder Jun 2000 A
6073231 Bluhm et al. Jun 2000 A
6092175 Levy et al. Jul 2000 A
6098166 Leibholz et al. Aug 2000 A
6108753 Bossen et al. Aug 2000 A
6112019 Chamdani et al. Aug 2000 A
6119203 Snyder et al. Sep 2000 A
6138230 Hervin et al. Oct 2000 A
6145054 Mehrotra et al. Nov 2000 A
6170051 Dowling Jan 2001 B1
6269427 Kuttanna et al. Jan 2001 B1
6212544 Borkenhagen et al. Apr 2001 B1
6237081 Le et al. May 2001 B1
6286027 Dwyer, III et al. Sep 2001 B1
6311261 Chamdani et al. Oct 2001 B1
6336168 Frederick, Jr. et al. Jan 2002 B1
6336183 Le et al. Jan 2002 B1
6356918 Chuang et al. Mar 2002 B1
6381676 Aglietti et al. Apr 2002 B2
6418513 Arimilli et al. Jul 2002 B1
6418525 Charney et al. Jul 2002 B1
6425073 Roussel et al. Jul 2002 B2
6463524 Delaney et al. Oct 2002 B1
6487578 Ranganathan Nov 2002 B2
6549930 Chrysos et al. Apr 2003 B1
6553480 Cheong et al. Apr 2003 B1
6564315 Keller et al. May 2003 B1
6654876 Le et al. Nov 2003 B1
6728866 Kahle et al. Apr 2004 B1
6732236 Favor May 2004 B2
6839828 Gschwind et al. Jan 2005 B2
6847578 Ayukawa et al. Jan 2005 B2
6868491 Moore Mar 2005 B1
6883107 Rodgers et al. Apr 2005 B2
6944744 Ahmed et al. Sep 2005 B2
6948051 Rivers et al. Sep 2005 B2
6954846 Leibholz et al. Oct 2005 B2
6978459 Dennis et al. Dec 2005 B1
7020763 Saulsbury et al. Mar 2006 B2
7024543 Grisenthwaite et al. Apr 2006 B2
7086053 Long et al. Aug 2006 B2
7093105 Webb, Jr. et al. Aug 2006 B2
7100028 McGrath et al. Aug 2006 B2
7114163 Hardin et al. Sep 2006 B2
7124160 Saulsbury et al. Oct 2006 B2
7155600 Burky et al. Dec 2006 B2
7191320 Hooker et al. Mar 2007 B2
7263624 Marchand et al. Aug 2007 B2
7290261 Burky et al. Oct 2007 B2
7302527 Barrick et al. Nov 2007 B2
7350056 Abernathy et al. Mar 2008 B2
7386704 Schulz et al. Jun 2008 B2
7395419 Gonion Jul 2008 B1
7398374 Delano Jul 2008 B2
7401188 Matthews Jul 2008 B2
7469318 Chung et al. Dec 2008 B2
7478198 Latorre et al. Jan 2009 B2
7478225 Brooks et al. Jan 2009 B1
7490220 Balasubramonian et al. Feb 2009 B2
7509484 Golla et al. Mar 2009 B1
7512724 Dennis et al. Mar 2009 B1
7565652 Janssen et al. Jul 2009 B2
7600096 Parthasarathy et al. Oct 2009 B2
7669035 Young et al. Feb 2010 B2
7669036 Brown et al. Feb 2010 B2
7685410 Shen et al. Mar 2010 B2
7694112 Barowski et al. Apr 2010 B2
7707390 Ozer et al. Apr 2010 B2
7721069 Ramchandran et al. May 2010 B2
7793278 Du et al. Sep 2010 B2
7836317 Marchand et al. Nov 2010 B2
7889204 Hansen et al. Feb 2011 B2
7890735 Tran Feb 2011 B2
7926023 Okawa et al. Apr 2011 B2
7949859 Kalla et al. May 2011 B2
7975134 Gonion Jul 2011 B2
7987344 Hansen et al. Jul 2011 B2
8041928 Burky et al. Oct 2011 B2
8046566 Abernathy et al. Oct 2011 B2
8074224 Nordquist et al. Dec 2011 B1
8099556 Ghosh et al. Jan 2012 B2
8103852 Bishop et al. Jan 2012 B2
8108656 Katragadda et al. Jan 2012 B2
8131942 Harris et al. Mar 2012 B2
8131980 Hall et al. Mar 2012 B2
8135942 Abernathy et al. Mar 2012 B2
8140832 Mejdrich et al. Mar 2012 B2
8141088 Morishita et al. Mar 2012 B2
8151012 Kim et al. Apr 2012 B2
8166282 Madriles et al. Apr 2012 B2
8184686 Wall et al. May 2012 B2
8219783 Hara Jul 2012 B2
8219787 Lien et al. Jul 2012 B2
8243866 Huang et al. Aug 2012 B2
8250341 Schulz et al. Aug 2012 B2
8271765 Bose et al. Sep 2012 B2
8325793 Zhong Dec 2012 B2
8335892 Minkin et al. Dec 2012 B1
8386751 Ramchandran et al. Feb 2013 B2
8402256 Arakawa Mar 2013 B2
8412914 Gonion Apr 2013 B2
8464025 Yamaguchi et al. Jun 2013 B2
8489791 Byrne et al. Jul 2013 B2
8521992 Alexander et al. Aug 2013 B2
8555039 Rychlik Oct 2013 B2
8578140 Yokoi Nov 2013 B2
8654884 Kerr Feb 2014 B2
8656401 Venkataramanan et al. Feb 2014 B2
8683182 Hansen et al. Mar 2014 B2
8713263 Bryant Apr 2014 B2
8793435 Ashcraft et al. Jul 2014 B1
8806135 Ashcraft et al. Aug 2014 B1
8850121 Ashcraft et al. Sep 2014 B1
8929496 Lee et al. Jan 2015 B2
8935513 Guthrie et al. Jan 2015 B2
8966232 Tran Feb 2015 B2
8984264 Karlsson et al. Mar 2015 B2
9069563 Konigsburg Jun 2015 B2
9207995 Boersma et al. Dec 2015 B2
9223709 O'Bleness et al. Dec 2015 B1
9519484 Stark Dec 2016 B1
9665372 Eisen et al. May 2017 B2
9672043 Eisen et al. Jun 2017 B2
9690585 Eisen et al. Jun 2017 B2
9690586 Eisen et al. Jun 2017 B2
9720696 Chu et al. Aug 2017 B2
9740486 Boersma et al. Aug 2017 B2
9760375 Boersma et al. Sep 2017 B2
9934033 Cordes et al. Apr 2018 B2
9940133 Cordes et al. Apr 2018 B2
9983875 Chadha et al. May 2018 B2
10037211 Fernsler et al. Jul 2018 B2
10037229 Fernsler et al. Jul 2018 B2
10042647 Eickemeyer et al. Aug 2018 B2
10042770 Chadha et al. Aug 2018 B2
20020038417 Strombergsson Mar 2002 A1
20020078302 Favor Jun 2002 A1
20020138700 Holmberg Sep 2002 A1
20020194251 Richter et al. Dec 2002 A1
20030120882 Granston et al. Jun 2003 A1
20030163669 Delano Aug 2003 A1
20030182537 Le et al. Sep 2003 A1
20040111594 Feiste et al. Jun 2004 A1
20040154011 Wang Aug 2004 A1
20040162966 James Webb, Jr. et al. Aug 2004 A1
20040172521 Hooker et al. Sep 2004 A1
20040181652 Ahmed et al. Sep 2004 A1
20040216101 Burky et al. Oct 2004 A1
20050060518 Augsburg et al. Mar 2005 A1
20050138290 Hammarlund et al. Jun 2005 A1
20060095710 Pires Dos Reis Moreira et al. May 2006 A1
20060106923 Balasubramonian et al. May 2006 A1
20060143513 Hillman et al. Jun 2006 A1
20070022277 Iwamura et al. Jan 2007 A1
20070079303 Du et al. Apr 2007 A1
20070101102 Dierks, Jr. et al. May 2007 A1
20070106874 Pan et al. May 2007 A1
20070180221 Abernathy et al. Aug 2007 A1
20070204137 Tran Aug 2007 A1
20080016327 Menon Jan 2008 A1
20080098260 Okawa et al. Apr 2008 A1
20080104375 Hansen et al. May 2008 A1
20080133885 Glew Jun 2008 A1
20080162889 Cascaval et al. Jul 2008 A1
20080162895 Luick Jul 2008 A1
20080172548 Caprioli et al. Jul 2008 A1
20080270749 Ozer et al. Oct 2008 A1
20080307182 Arimilli et al. Dec 2008 A1
20080313424 Gschwind Dec 2008 A1
20090037698 Nguyen Feb 2009 A1
20090113182 Abernathy Apr 2009 A1
20090198921 Chen et al. Aug 2009 A1
20090210675 Alexander et al. Aug 2009 A1
20090240929 Hutton et al. Sep 2009 A1
20090265532 Caprioli et al. Oct 2009 A1
20090282225 Caprioli et al. Nov 2009 A1
20090300319 Cohen et al. Dec 2009 A1
20100100685 Kurosawa et al. Apr 2010 A1
20100161945 Burky et al. Jun 2010 A1
20100191940 Mejdrich et al. Jul 2010 A1
20100262781 Hrusecky et al. Oct 2010 A1
20110040955 Hooker Feb 2011 A1
20110078697 Smittle et al. Mar 2011 A1
20120060015 Eichenberger et al. Mar 2012 A1
20120066482 Gonion Mar 2012 A1
20120110271 Boersma et al. May 2012 A1
20120110304 Bryant May 2012 A1
20120226865 Choi et al. Sep 2012 A1
20120246450 Abdallah Sep 2012 A1
20130212585 Tran Aug 2013 A1
20130254488 Kaxiras et al. Sep 2013 A1
20130305022 Eisen et al. Nov 2013 A1
20130318332 Gonion Nov 2013 A1
20130326198 Meier Dec 2013 A1
20130339670 Busaba Dec 2013 A1
20140025933 Venkataramanan et al. Jan 2014 A1
20140040599 Fleischer et al. Feb 2014 A1
20140075159 Frigo et al. Mar 2014 A1
20140189243 Cuesta et al. Jul 2014 A1
20140215189 Airaud et al. Jul 2014 A1
20140223144 Heil et al. Aug 2014 A1
20140244239 Nicholson et al. Aug 2014 A1
20140281408 Zeng Sep 2014 A1
20140282429 Archer et al. Sep 2014 A1
20140325188 Ogasawara Oct 2014 A1
20140380024 Spadini Dec 2014 A1
20150046662 Heinrich et al. Feb 2015 A1
20150089186 Kim Mar 2015 A1
20150121010 Kaplan et al. Apr 2015 A1
20150121046 Kunjan et al. Apr 2015 A1
20150134935 Blasco May 2015 A1
20150186292 Sundaram Jul 2015 A1
20150199272 Goel et al. Jul 2015 A1
20150324204 Eisen et al. Nov 2015 A1
20150324205 Eisen et al. Nov 2015 A1
20150324206 Eisen et al. Nov 2015 A1
20150324207 Eisen et al. Nov 2015 A1
20160070571 Boersma et al. Mar 2016 A1
20160070574 Boersma et al. Mar 2016 A1
20160092231 Chu et al. Mar 2016 A1
20160092276 Chu et al. Mar 2016 A1
20160103715 Sethia et al. Apr 2016 A1
20160202986 Ayub et al. Jul 2016 A1
20160202988 Ayub et al. Jul 2016 A1
20160202989 Eisen et al. Jul 2016 A1
20160202990 Brownscheidle et al. Jul 2016 A1
20160202991 Eisen et al. Jul 2016 A1
20160202992 Brownscheidle et al. Jul 2016 A1
20160239307 Alexander Aug 2016 A1
20170168837 Eisen et al. Jun 2017 A1
20170255465 Chadha et al. Sep 2017 A1
20170277542 Fernsler et al. Sep 2017 A1
20170277543 McGlone et al. Sep 2017 A1
20170329641 Chadha et al. Nov 2017 A1
20170329713 Chadha et al. Nov 2017 A1
20170351521 Hrusecky Dec 2017 A1
20170357507 Cordes et al. Dec 2017 A1
20170357508 Cordes et al. Dec 2017 A1
20170371658 Eickemeyer et al. Dec 2017 A1
20180039577 Chadha et al. Feb 2018 A1
20180067746 Chu et al. Mar 2018 A1
20180260230 Eickemeyer et al. Sep 2018 A1
20180276132 Chadha et al. Sep 2018 A1
20180285161 Chadha et al. Oct 2018 A1
20180293077 Fernsler et al. Oct 2018 A1
Foreign Referenced Citations (9)
Number Date Country
101021778 Aug 2007 CN
101676865 Mar 2010 CN
101876892 Nov 2010 CN
102004719 Apr 2011 CN
1212680 Jul 2007 EP
2356324 May 2001 GB
2356324 Oct 2001 GB
2009157887 Jul 2009 JP
WO 2015067118 May 2015 WO
Non-Patent Literature Citations (30)
Entry
Anonymous, “A Novel Data Prefetch Method Under Heterogeneous Architecture”, IP.com Prior Art Database Technical Disclosure No. 000224167 (online), Dec. 2012, 14 pages, URL: http://ip.com/IPCOM/000224167.
Anonymous, “Method and System for Predicting Performance Trade-Offs During Critical Path Execution In A Processor”, IP.com Prior Art Database Technical Disclosure No. 000223340 (online), Nov. 2012, 7 pages, URL: http://ip.com/IPCOM/000223340.
IBM, “Using a mask to block the wakeup of dependents of already-issued instructions”, An IP.com Prior Art Database Technical Disclosure (online), IP.com No. 000193322, URL: http://ip.com/IPCOM/000193322, dated Feb. 18, 2010, 2 pages.
Anonymous, “Fast wakeup of load dependent instructions by a select bypass”, An IP.com Prior Art Database Technical Disclosure (online), IP.com No. 000216900, URL: http://ip.com/IPCOM/000216900, dated Apr. 23, 2012, 2 pages.
Kalla, et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor”, IEEE Micro, vol. 24, No. 2, Mar. 2004, pp. 40-47, IEEE Xplore Digital Library (online), DOI: 10.1109/MM.2004.1289290.
Mathis et al., “Characterization of simultaneous multithreading (SMT) efficiency in POWER5”, IBM Journal of Research and Development, Jul. 2005, pp. 555-564, vol. 49, No. 4/5, International Business Machines Corporation, Armonk, NY.
Sha et al., “Scalable Store-Load Forwarding via Store Queue Index Prediction”, Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05), dated Nov. 2005, 12 pages, http://repository.upenn.edu/cis_papers/262 (online), ISBN: 0/7695-2440-0; DOI: 10.1109/MICRO.2005.29, IEEE Computer Society, Washington, DC.
ROC920150429US1, Appendix P; List of IBM Patent or Applications Treated as Related, Sep. 23, 2016, 2 pages.
Roth, Store Vulnerability Window (SVW): Re-Execution Filtering for Enhanced Load/Store Optimization, Technical Reports (CIS), Paper 35, Jan. 2004, 23 pages, University of Pennsylvania Scholarly Commons (online), <https://repository.upenn.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1023&context=cis_reports>.
Bobba et al., Safe and Efficient Supervised Memory Systems, 17th International Symposium on High Performance Computer Architecture (HPCA), Feb. 2011, 12 pages, IEEE xPlore Digital Library (online; IEEE.org), DOI: 10.1109/HPCA.2011.5749744.
U.S. Appl. No. 15/152,257, to Sundeep Chadha et al., entitled, Operation Of A Multi-Slice Processor Implementing A Load/Store Unit Maintaining Rejected Instructions, assigned to International Business Machines Corporation, 37 pages, filed May 11, 2016.
U.S. Appl. No. 15/180,838, to Robert A. Cordes et al., entitled, Operation Of A Multi-Slice Processor Implementing Simulataneous Two-Target Loads And Stores, assigned to International Business Machines Corporation, 37 pages, filed Jun. 13, 2016.
U.S. Appl. No. 15/193,338, to Richard J. Eickemeyer et al., entitled, Managing A Divided Load Reorder Queue, assigned to International Business Machines Corporation, 35 pages, filed Jun. 27, 2016.
U.S. Appl. No. 15/230,532, to Sundeep Chadha et al., entitled Flush Avoidance In A Load Store Unit, assigned to International Business Machines Corporation, 37 pages, filed Aug. 8, 2016.
U.S. Appl. No. 15/219,638, to Robert A. Cordes et al., entitled, Operation Of A Multi-Slice Processor Implementing Simultaneous Two-Target Loads And Stores, assigned to International Business Machines Corporation, 37 pages, filed Jul. 26, 2016.
U.S. Appl. No. 15/221,035, to Sundeep Chadha et al., entitled, Operation Of A Multi-Slice Processor Implementing A Load/Store Unit Maintaining Rejected Instructions, assigned to International Business Machines Corporation, 37 pages, filed Jul. 27, 2016.
Gebhart et al., A Hierarchical Thread Scheduler and Register File for Energy-efficient Throughput Processors, ACM Transactions on Computer Systems, Apr. 2012, pp. 8:1-8:38, vol. 30, No. 2, Article 8, ACM New York.
Anonymous, Method and system for Implementing “Register Threads” in a Simultaneously-Multithreaded (SMT) Processor Core, An IP.com Prior Art Database Technical Disclosure, IP.com No. IPCOM000199825D IP.com Electronic Publication: Sep. 17, 2010 pp. 1-4 <http://ip.com/IPCOM/000199825>.
Czajkowski et al., Resource Management for Extensible Internet Servers, Proceedings of the 8 ACM SIGOPS European Workshop on Support for Composing Distributed Applications Sep. 1998 pp. 33-39 ACM Portugal.
Bridges of al., A CPU Utilization Limit for Massively Parallel MIMD Computers, Fourth Symposium on the Frontiers of Massively Parallel Computing Oct. 19-21, 1992 pp. 83-92 IEEE VA US.
Pechanek et al., ManArray Processor Interconnection Network: An Introduction, Euro-Par' 99 Parallel Processing, Lecture Notes in Computer Science, 5th International Euro-Par Conference, Aug. 31-Sep. 3, 1999, Proceedings, pp. 761-65, vol. 1685, Spring Berlin Heidelberg, Toulouse, France.
Pechanek et al., The ManArray Embedded Processor Architecture, Proceedings of the 26 Euromicro Conference, IEEE Computer Society, Sep. 5-7, 2000, pp. 348-355, vol. 1, Maastricht.
Anonymous, Precise Merging Translation Queue in a Slice-Based Processor, An IP.com Prior Art Database Technical Disclosure, IP.com No. IPCOM000249317D IP.com Electronic Publication: Feb. 16, 2017, pp. 1-3. <https://priorart.ip.com/IPCOM/000249317 >.
International Search Report and Written Opinion, PCT/IB2015/052741, dated Oct. 9, 2015.
Appendix P; List of IBM Patent or Applications Treated as Related, Aug. 28, 2018, 2 pages.
U.S. Appl. No. 15/995,850, to Sundeep Chadha et al., entitled, Operation Of A Multi-Slice Processor Implementing A Load/Store Unit Maintaining Rejected Instructions, assigned to International Business Machines Corporation, 37 pages, filed Jun. 1, 2018.
U.S. Appl. No. 15/997,863, to Sundeep Chadha et al., entitled, Operation Of A Multi-Slice Processor Implementing A Load/Store Unit Maintaining Rejected Instructions, assigned to International Business Machines Corporation, 37 pages, filed Jun. 5, 2018.
U.S. Appl. No. 16/003,950, to Kimberly M. Fernsler et al., entitled, Operation Of A Multi-Slice Processor With An Expanded Merge Fetching Queue, assigned to International Business Machines Corporation, 35 pages, filed Jun. 8, 2018.
Slota et al., Complex Network Analysis using Parallel Approximate Motif Counting, 2014 IEEE 28th International Parallel & Distributed Processing Symposium, DOI: 10.1109/IPDPS.2014.50, Date Added to IEEE Xplore: Aug. 14, 2014, 10 pages.
Gorentla et al., Exploring the All-to-All Collective Optimization Space with ConnectX CORE-Direct, IEEE, 2012 41st International Confererence on Parallel Processing, DOI: 10.1109/ICPP.2012.28, Date Added to IEEE Xplore: Oct. 25, 2012, 10 pages.
Related Publications (1)
Number Date Country
20170300328 A1 Oct 2017 US