Cameron, E., “Recent Advances in Transgenic Technology,” Molecular Biotechnology, 7:253-265 (1997). |
Felsenstein et al., “Transgenic Rat an In-Vitro Studies of B-Amyloid Precursor Protein Processing;” Alzheimer's and Parkinson's Diseases, Hanin et al. Ed., pp. 401-409, Plenum Press, New York, (1995). |
Niemann, H., “Transgenic farm animals get off the ground;” Transgenic Research 7:73-75 (1998). |
Sigmund, C., “Viewpoint: Are Studies in Genetically Altered Mice Out of Control,” Arterioscler Thromb Vasc Biol., 20:1425-1429 (2000). |
U.S. Provisional application Ser. No. 60/168,594, Chalifour et al. |
U.S. Provisional application Ser. No. 60/169,687, Chain. |
U.S. Provisional application Ser. No. 60/184,601, Holtzman et al. |
U.S. Provisional application Ser. No. 60/186,295, Rasmussen et al. |
U.S. Provisional application Ser. No. 60/254,465, Holtzman et al. |
U.S. Provisional application Ser. No. 60/254,498, Holtzman et al. |
U.S. patent application Ser. No. 09/441,140, Solomon et al. |
Barrow, et al., “Solution Conformations and aggregational Properties of Synthetic Amyloid Beta-Peptides of Alzheimer's Disease. Analysis of Circular Dichroism Spectra” J. Mol. Biol., 225(4): 1075-1093 (1992). |
Beasley, “Alzheimer's traced to proteins caused by aging,” Reuters, Apr. 20, 2001 7:56 PM ET. |
Caputo et al., “Therapeutic approaches targeted at the amyloid proteins in Alzheimer's disease,” Clin. Neuropharm., 15:414A-414B (1992). |
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Thimerosal in Vaccines (Mercury in Plasma-Derived Products), web site contents found at : http://www.fda.gov/cber/vaccine/thimerosal.htm, last updated May 16, 2002. |
Chapman, Paul F., “Model behavior,” Nature, 408:915-916 (2000). |
Chemical Abstract database, Abstract of “Injection of Newborn Mice with Seven Chemical Adjuvants to Help Determine Their Safety in Use in Biologicals,” Chemical Abstract database. (Publication date unknown). |
Chung et al. “Uptake, Degradation, and Release of Fibrillar and Soluble Forms of Alzheimer's Amyloid β-Peptide by Microglial Cells,” J. Biol. Chem., 274(45):32301-32308 (1999). |
Coloma et al., “Transport Across the Primate Blood-Brain Barrier of a Genetically Engineered Chimeric Monoclonal Antibody to the Human Insulin Receptor,” Pharm. Res., 17:266-274 (2000). |
Cordell, B., “β-Amyloid formation as a potential therapeutic target for Alzheimer's disease,” Ann. Rev. Pharmacol. Toxicol., 34:69-89 (1994). |
Costa et al., “Immunoassay for transthyretin variants associated with amyloid neuropathy,” Scand. J. Immunol., 38:177-182 (1993). |
Daly, et al., “Detection of the membrane-retained carboxy-terminal tail containing polypeptides of the amyloid precursor protein in tissue from Alzheimer's Disease brain,” Life Sci., 63:2121-2131 (1998). |
Dialog/Derwent, Abstract of WPI Acc No.: 1997-054436/199706: Stable vaccine compsns.—comprise a macrocyclic lactone, a milbemycin, and avermectin, an antigen, a dispersing agent, an adjuvant, a water sol. organic solvent and saline or water, Derwent File 351: Derwent WPI database. (Publication date unknown). |
Dumery et al., “β-Amyloid protein aggregation: its implication in the physiopathology of Alzheimer's disease,” Pathol. Biol., 49:72-85 (2001). |
Elan, “Elan and AHP Provide an Update on the Phase 2A Clinical Trial of AN-1792,” Press Release. (Jan. 18, 2002). |
Elan, “Elan and Wyeth Provide Update on Status of Alzheimer's Collaboration,” Press Release (Mar. 1, 2002). |
Esiri, “Is an effective immune intervention for Alzheimer's disease in prospect?,” Trends in Pharm. Sci., 22:2-3 (2001). |
Frenkel et al., “Generation of auto-antibodies towards Alzheimer's disease vaccination,” Vaccine, 19:2615-2619 (2001). |
Frenkel et al., “Immunization against Alzheimer's β-amyloid plaques via EFRH phage administration,” PNAS USA, 97:11455-11459 (2000). |
Frenkel et al., “N-terminal EFRH sequence of Alzheimer's β-amyloid peptide represents the epitope of its anti-aggregating antibodies,” J. of Neuroimmunology, 88:85-90 (1998). |
Frenkel et al., “High affinity binding of monoclonal antibodies to the sequential eptitope EFRH of β-amyloid peptide is essential for modulation of fibrillar aggregation,” J. of Neuroimmunology, 95:136-142 (1999). |
Frenkel, et al., “Modulation of Alzheimer's β-amyloid neurotoxicity by site-directed single chain antibody,” J. of Neuroimmunology, 106:23-31 (2000). |
Friedland, et al., “Neuroimaging of Vessel Amyloid in Alzheimer's Disease,” in Cerebrovascular Pathology in Alzheimer's Disease, eds. de la Torre and Hachinski, New York Academy of Science, New York, New York (1997). |
Gardaella et al., “Intact Alzheimer amyloid precursor protein (APP) is present in platelet membranes and is encoded by platelet mRNA,” Biochem. Biophys. Res. Comm., 173:1292-1298 (1990). |
Geddes, “N-terminus truncated β-amyloid peptides and C-terminus truncated secreted forms of amyloid precursor protein: distinct roles in the pathogenesis of Alzheimer's disease,” Neurobiology of Aging, 20:75-79 (1999). |
Giulian, et al., “The HHQK Domain of b-Amyloid Provides a Structural Basis for the Immunopathology of Alzheimer's Disease,” Journal of Biological Chem., 273:29719-29726 (1998). |
Gonzalez-Fernandez et al., “Low antigen dose favors selection of somatic mutants with hallmarks of antibody affinity maturation,” Immunology, 93:149-153 (1998). |
Gortner, Outlines of Biochemistry, pp. 322-323, John Wiley & Sons, Inc., New York (1949). |
Grubeck-Loebenstein, et al., “Immunization with β-amyloid: could T-cell activation have a harmful effect?”, TINS, 23:114 (2000). |
Haass et al. “Amyloid beta-peptide is produced by cultured cells during normal metabolism,” Nature, 359(6393):322-5 (1992). |
Harigaya, et al., “Modified amyloid β protein ending at 42 or 40 with different solubility accumulates in the brain of Alzheimer's disease,” Biochem. Biophys. Res. Comm., 211:1015-1022 (1995). |
Hazama, et al., “Intranasal Immunization Against Herpes Simplex Virus Infection by Using a Recombinant Glycoprotein D Fused With Immunomodulating Proteins, the B Subunit of Escherichia Coli Heat-Labile Enterotoxin and Interleukin-2”, Immunology, vol. 78: 643-649 (1993). |
Hilbich et al., :Human and rodent sequence analogs of Alzheimer's amyloid βA4 share similar properties and can be solubilized in buffers of pH 7.4, Eur. J. Biochem., 201:61-69 (1991). |
Ikeda, et al., “Immunogold labeling of cerebrovascular and neuritic plaque amyloid fibrils in Alzheimer's disease with and anti-β protein monoclonal antibody,” Lab. Invest., 57:446-449 (1987). |
Jen, et al., “Preparation and purification of antisera against different regions or isoforms of b-amyloid precursor protein,” Brain Research Protocols, 2:23-30 (1997). |
Kida, et al., “Early amyloid-β deposits show different immunoreactivity to the amino- and carboxy-terminal regions of b-peptide in Alzheimer's disease and Down's syndrome brain,” Neuroscience Letters, 193:105-108 (1995). |
Lansbury, Peter T., “Inhibition of amyloid formation: a strategy to delay the onset of Alzheimer's disease,” Curr. Ops. in Chemical Biology, 1:260-267 (1997). |
Lemere, et al., “Nasal Aβ treatment induces anti-Aβ antibody production and decreases cerebral amyloid burden in PD-APP mice,” Annals of the NY Acad. Sci., 920:328-331 (2000). |
Mak, et al., “Polyclonals to b-amyloid (1-42) identify most plaque and vascular deposits in Alzheimer cortex, but not striatum,” Brain Research, 667:138-142 (1994). |
Mann, et al., “Amyloid β protein (Aβ) deposition in chromosome 14-linked Alzheimer's disease: Predominance of Aβ42(43),” Annals of Neurology, 40:149-156 (1996). |
Mann, et al., “The extent of amyloid deposition in brain in patients with Down's syndrome does not depend upon the apolipoprotein E genotype,” Neuroscience Letters, 196:105-106 (1995). |
McGeer, et al., “Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy,” J. of Neuroscience Res., 31:428-442 (1992). |
McNeal, et al., “Stimulation of local immunity and protection in mice by intramuscular immunization with triple- or double-layered rotavirus particles and QS-21,” Virology, 243:158-166 (1998). |
Mena, et al., “Monitoring pathological assembly of tau and β-amyloid proteins in Alzheimer's disease,” Acta Neuropathol., 89:50-56 (1995). |
Morris, et al., “The Consortium to Establish a registry for Alzheimer's Disease (CERAD),” Neurology, 39:1159-65 (1989). |
Nakamura et al., “Histopathological studies on senile plaques and cerebral amyloid angiopathy in aged cynomologus monkeys,” Exp. Anim., 43:711-718 (1995). |
Nakamura, et al., “Carboxyl end-specific monoclonal antibodies to amyloid β protein (Aβ) subtypes (Aβ40 and Aβ42(43)) differentiate Ab in senile plaques and amyloid angiopathy in brains of aged cynomolgus monkeys,” Neuroscience Letters, 201:151-154 (1995). |
Nakayama et al., “Histopathological studies of senile plaques and cerebral amyloidosis in cynomolgus monkeys,” J. of Med. Primatology, 27:244-252 (1998). |
Newcombe and Cohen, “Solubility characteristics of isolated amyloid fibrils,” Biochim. Biophys. Acta, 104:480-486 (1965). |
Pardridge et al., “Chimeric peptides as vehicle for peptide pharmaceutical delivery through the blood-brain barrier,” Biochem. Bipophys. Res. Comm., 146:307-313 (1987). |
Peterson, et al., “Recombinant Antibodies: Alternative Strategies for Developing and Manipulating Murine-Derived Monoclonal Antibodies,” Laboratory Animal Science, 46(1):8-14 (1996). |
Philippe, et al. “Generation of a monoclonal antibody to the carboxy-terminal domain of tau by immunization with the amino-terminal domain of the amyloid precursor protein,” J. of Neuroscience Res., 46:709-719 (1996). |
Raso, V.A., Grant application # R43 AGI 5746-01 (full text), “Immunotherapy of Alzheimer's Disease” (publication date unknown). |
Saito et al., “Vector-mediated delivery of 125I-labeled β-amyloid peptide Ab1-40 through the blood-brain barrier and binding to Alzheimer disease amyloid of the Aβ1-40 vector complex,” PNAS USA, 92:10227-10231 (1995). |
Saitoh, N. and K. Imai, “Immunological analysis of Alzheimer's disease using anti-β-protein monoclonal antibodies,” Sapporo Med. J., 60:309-320 (1991). |
Sasaki et al., “Human choroid plexus is an uniquely involved area of the brain amyloidosis: a histochemical, immunohistochemical and ultrastructural study,” Brain Res., 755:193-201 (1997). |
Schenk, et al., “β-peptide immunization,” Arch. Nuerol., 57:934-936 (2000). |
St. George-Hyslop, Peter H. and David A. Westaway, :Antibody clears senile plaques, Nature, 40:116-117 (1999). |
Szendrei, et al., “The effects of aspartic acid-bond isomerization on in vitro properties of the amyloid β-peptide as modeled with N-terminal decapeptide fragments,” Int. J. Peptide Protein Res., 47:289-296 (1996). |
Thorsett, E.D. and L.H. Latimer, “Therapeutic approaches to Alzheimer's disease,” Curr. Op. in Chem. Biology, 4:377-382 (2000). |
Tjernberg et al., “Arrest of β-amyloid fibril formation by a pentapeptide ligand,” Journal of Biological Chemistry, 271:8545-8548 (1996). |
Weiner et al., “Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alhzeimer's disease,” Annals of Neurology, 48:567-579 (2000). |
Wisconsin Alumni Research Foundation, “Injection of Newborn Mice with Seven Chemical Adjuvants to Help Determine Their Safety in Use in Biologicals”, U.S. Govt. Res. Develop. Rep., 70(24), 56. (Publication date unknown). |
Wu, et al., “Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor,” J. Clin. Invest., 100:1804-1812 (1997). |
Yamaguchi et al., Diffuse plaques associated with astroglial amyloid β protein, possibly showing a disappearing stage of senile plaques, Acta Neuropathol., 95:217-222 (1998). |
Younkin, “Amyloid β vaccination: reduced plaques and improved cognition,” Nature Medicine, 7:18-19 (2001). |
Dialog/Derwent, Abstract of WPI Acc. No.: 1997-054436/199706: Stable vaccine compsns.—comprise a macrocyclic lactone, a milbemycin, an avermectin, and antigen, a dispersing agent, an adjuvant, a water sol. organic solvent and saline or water, Derwent File 351: Derwent WPI database. (Publication date unknown). |
U.S. patent application Ser. No. 09/724,842, Chalifour et al., filed Nov. 28, 2000. |
Chen, et al. A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer's disease. Nature. 408(6815):975-9 (2000). |
Du, et al. Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology. 57(5):801-5 (2001). |
Janus, et al. A beta peptide immunization reduces a behavioural impairment and plaques in a model of Alzheimer's disease. Nature. 408(6815):979-82 (2000). |
Mattson, MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 77(4):1081-132 (1997). |
Merluzzi, et al. Humanized antibodies as potential drugs for therapeutic use. Adv Clin Path. 4(2):77-85 (2000). |
Morgan, et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature. 408(6815):982-5 (2000). |
Schenk, et al. Immunotherapy with beta-amyloid for Alzheimer's disease: a new frontier. DNA Cell Biol. 20(11):679-81 (2001). |
Selkoe, DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8(11):447-53 (1998). |
Sigurdsson, et al. In vivo reversal of amyloid-beta lesions in rat brain. J Neuropathol Exp Neurol. 59(1):11-17 (2000). |
Sinha, et al. Recent advances in the understanding of the processing of APP to beta amyloid peptide. Ann N Y Acad Sci. 920:206-8 (2000). |
Small, et al. Alzheimer's disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci. 2(8):595-8 (2001). |
Soto, et al. Beta sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nat Med. 4(7):822-6 (1998). |
Vehmas, et al. beta-Amyloid peptide vaccination results in changes in serum and brain Abeta levels in APPswe/PS1 DeltaE9 mice, as detected by SELDI-TOF-based ProteinChip® technology. DNA Cell Biol. (11):713 21 (2001). |
Selkoe, D.J., “Imaging Alzheimer's Amyloid,” Nat. Biotech., 18:823-824 (2000). |
Wengenack et al., “Targeting Alzheimer amyloid plaques in vivo,” Nature Biotech., 18:868-824 (2000). |
Bard, F. et al., Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease, Nature Medicine, Aug. 2000, pp. 916-919, 6(8). |
Helmuth, L., Further Progress on a Beta-Amyloid Vaccine, Science, Jul. 19, 2000. p. 375, 289. |
Schenk, D. B., Therapeutic Approaches Related to Amyloid-Beta Peptide and Alzheimer's Disease, J. of Med. Chem., Oct. 13, 1995, pp. 4141-4154, 38(21). |
Southwick, P. C., Assessment of Amyloid Beta Protein in Cerebrospinal Fluid as an Aid in the Diagnosis of Alzheimer's Disease, J. of Neurochemistry, 1996, pp. 259-265, 66. |
Wen, G.Y., Alzheimer's Disease and Risk Factors, J. of Food and Drug Anal., Apr. 20, 1998, pp. 465-475, 6(2). |
Bercovici et al., “Chronic Intravenous Injections of Antigen Induce and Maintain Tolerance in T Cell Receptor-Transgenic Mice,” Eur. J. Immunol. 29:345-354 (1999). |
Bickel et al., “Site Protected, Cationized Monoclonal Antibody Against Beta Amyloid as a Potential Diagnostic Imaging Technique for Alzheomer's Diseases,” Soc. for Neuroscience Abstracts 18:764 (1992). |
Chen et al., “An Antibody to β Amyloid Precursor Protein Inhibits Cell-substratum Adhesion in Many Mammalian Cell Types,” Neuroscience Letters 125:223-226 (1991). |
Demattos et al., “Peripheral Anti Aβ Antibody Alters CNS And Plasma Aβ Clearance and Decreases Brain Aβ Burden in a Mouse Model of Alzheimer's Disease,” Proc. Natl. Acad. Sci. USA, 10.1073/pnas.151261398 (2001). |
Friedland et al., “Development of an anti-Aβ monoclonal antibody for in vivo imaging of amyloid angiopathy in Alzheimer's disease,” Mol. Neurology, 9:107-113 (1994). |
Games et al., “Prevention and Reduction of AD-type Pathology in PDAPP Mice Immunized with Aβ1-42,” Annals of the New York Academy of Science 920:274-84 (2000). |
Gravina et al., “Amyloid β Protein (Aβ) in Alzheimer's Disease,” J. Biol. Chem., 270(13):7013-7016 (1995). |
Harrington et al., “Characterisation of an epitope specific to the neuron-specific isoform of human enolase recognised by a monoclonal antibody raised against a synthetic peptide corresponding to the C-terminus of β/A4-protein,” Biochimica Biophysica Acta, 1158:120-128 (1993). |
Iwatsubo et al., “Visualization of Aβ42(43) and Aβ40 in Senile Plaques with End-Specific Aβ Monoclonals: Evidence That an Initially Deposited Species Is Aβ42(43),” Neuron, 13:45-53 (1994). |
Joachim et al., “Antibodies to Non-beta Regions of the Beta-amyloid Precursor Protein Detect a Subset of Senile Plaques,” Am. J. of Pathology 138:373-378 (1991). |
Katzav-Gozansky et al., “Effect of monoclonal antibodies in preventing carboxypeptidase A aggregation,” Biotechnol. Appl. Biochem., 23:227-230 (1996). |
Konig et al., “Development and Characterization of a Monoclonal Antibody 369.2B Specific for the Carboxyl-Terminus of the βA4 Peptide,” Annals of NY Acad. Sci., 777:344-355 (1996). |
Majocha et al., “Development of a Monoclonal Antibody Specific for β/A4 Amyloid in Alzheimer's Disease Brain for Application to In Vitro Imaging of Amyloid Angiopathy,” J. of Nuclear Med. 33:2184-2189 (1992). |
Masters et al., “Amyloid Plaque core protein in Alzheimer Disease and Down Syndrome,” Proc. Natl. Acad. Sci. USA, 82:4245-4249 (1985). |
Mori et al., “Mass Spectrometry of Purified Amyloid β Protein in Alzheimer's Disease,” J. Biol. Chem., 267(24):17082-17088 (1992). |
Murphy et al., “Development of a Monoclonal Antibody Specific for the COOH-Terminal of β-Amyloid 1-42 and its Immunohistocheical Reactivity in Alzheimer's Disease and Related Disorders,” Am. J. Pathology, 144(5):1082-1088 (1994). |
Raso, V.A., Grant application # R43 AGI 5746-01, (1997). |
Rudinger, “Characteristics of the Amino Acids as Components of aPeptide Hormone Sequence,” in Peptide Hormones, J.A. Parson, ed. University Park Press, Baltimore, pp. 1-7 (1976). |
Saido et al., “Spatial Resolution of Fodrin Proteolysis in Postischemic Brain,” J. Biol. Chem., 268(33):25239-25243 (1993). |
Saido et al., “Spatial Resolution of the Primary β-Amyloidogenic Process Induced in Postischemic Hippocampus,” J. Biol. Chem., 269(21):15253-15257 (1994). |
Solomon et al., “Inhibitory effect of monoclonal antibodies on Alzheimer's β-amyloid peptide aggregation,” Int. J. Exp. Clin. Invest., 3:130-133 (1996). |
Solomon et al., “Thermal Stabilization of Carboxypeptidase A as a Function of PH and Ionic Milieu,” Biochem. Mol. Biol. Int., 43(3):601-611 (1997). |
Solomon et al., “Modulation of The Catalytic Pathway of Carboxypeptidase A by Conjugation with Polyvinyl Alcohols,” Adv. Mol. Cell Biology, 15A:33-45 (1996). |
Solomon et al., “Activity of monoclonal antibodies in prevention of in vitro aggregation of their antigens,” abstract from Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel (publication date unknown). |
Wong et al., “Neuritic Plaques and Cerebrovascular Amyloid in Alzheimer Disease are Antigenically Related,” Proc. Natl. Acad. Sci. USA, 82:8729-8732 (1985). |
Borchelt et al., “Accelerated Amyloid Deposition in the Brains of Transgenic Mice Coexpressing Mutant Presenilin 1 and Amyloid Precursor Proteins”, Neuron, 19: 939-945 (Oct. 1997). |
Boris-Lawrie et al., “Recent advances in retrovirus vector technology”, Cur. Opin. Genet Develop., 3: 102-109 (1993). |
Duff et al., “Mouse model made”, Nature, 373: 476-477 (1995). |
Games et al., “Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein”, Nature, 373(6514): 523-527 (Feb. 9, 1995). |
Glenn et al., “Skin immunization made possible by cholera toxin”, Nature, 391: 851 (1998). |
Glenner et al., “Alzheimer's Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein”, Biochemical and Biophysical Research Communications, 120(3): 885-890 (May 16, 1994). |
Glenner et al., “Alzheimer's Disease and Downs Syndrome: Sharing of A Unique Cerebrovascular Amyloid Fibril Protein”, Biochemical and Biophysical Research Communications, 122(3): 1131-1135 (Aug. 16, 1984). |
Gupta et al., “Differences in the immunogenicity of native and formalized cross reacting material (CRM197) of diptheria toxin in mice and guinea pigs and their implications on the development and control of diphtheria vaccine based on CRMs”, Vaccine, 15(12/13): 1341-1343 (1997). |
Hanes et al., “New advances in microsphere-based single-dose vaccines”, Advanced Drug Delivery Reviews, 28: 97-119 (1997). |
Hardy, “Amyloid, the presenilins and Alzheimer's disease”, TINS, 20(4): 154-159 (1997). |
Hsiao et al., “Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice”, Science, 274: 99-102 (Oct. 4, 1996). |
Elizan et al., “Antineurofilament antibodies in a postencephalitic and idiopathic parkinson's disease,” J. Neurol. Sciences, 59:341-347 (1983). |
Gaskin et al., “Human antibodies reactive with beta-amyloid protein in Alzheimer's disease,” J. Exp. Med., 177:1181-1186 (Apr. 1993). |
Lopez et al., “Serum auto-antibodies in Alzheimer's disease,” Acta. Neurol. Scand., 84:441-444 (1991). |
Paresce et al., “Microglial cells influence aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor,” Neuron, 17:553-565 (Sep. 1996). |
Raso, V. A., “Immunotherapy of Alzheimer's Disease,” Immunotherapy Weekly, Abstract (May 17, 1999). |
Solomon, A., “Pro-Rx (Protein Therapeutics),” University of Tennessee Medical Center. |
Human Immunology & Cancer Program brochure, from The University of Tenessee Medical Center/ Graduate School of Medicine, Knoxville, Tennessee. |
Lemere et al., “Mucosal Administration of Aβ Peptide Decreases Cerebral Amyloid Burden In Pd-App Transgenic Mice,” Society for Neuroscience Abstracts, vol. 25, part I, Abstract 519.6, 29th Annual Meeting, 10/23-28/99. |
Raso, V. A., “Immunotherapy of Alzheimer's Disease,” Immunotherapy Weekly, Abstract (Apr. 2, 1998). |
Solomon et al., “Disaggregation of Alzheimer β-amyloid by site-directed in mAb,” PNAS, 94:4109-4112 (1997). |
Solomon et al., “Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide,” PNAS, 93:452-455 (1996). |
Jansen et al., “Immunotoxins: Hybrid Molecules Combining High Specificity and Potent Cytotoxicity”, Immun. Rev., 62: 185-216 (1982). |
Langer, “New Methods of Drug Delivery”, Science, 249: 1527-1532 (Sep. 28, 1990). |
Livingston et al., “The Hepatitis B Virus-Specific CTL Responses Induced in Humans by Lipopeptide Vaccination Are Comparable to Those Elicited by Acute Viral Infection”, J. Immunol., 159: 1383-1392 (1997). |
McGee et al., “The encapsulation of a model protein in poly (D, L lactide-co-glycolide) microparticles of various sizes: an evaluation of process reproducibility”, J. Micro. Encap., 14(2): 197-210 (1997). |
Nathanson et al., “Bovine Spongiform Encephalopathy (BSE): Causes and Consequences of a Common Source Epidemic”, Am. J. Epidemiol., 145(11): 959-969 (Jun. 1, 1997). |
Paul et al., “Transdermal immunization with large proteins by means of ultradeformable drug carriers”, Eur. J. Immunol., 25: 3521-3524 (1995). |
Prieels et al., “Synergistic adjuvants for vaccines”, Chemical Abstracts, 120(8): p. 652, col. 1, abstract 86406t (Feb. 21, 1994). |
Selkoe, “Alzheimer's Disease: A Central Role for Amyloid”, J. Neuropathol. Exp. Neurol., 53(5): 438-447 (Sep. 1994). |
Selkoe, “Physiological production of the β-amyloid protein and the mechanism of Alzheimer's disease”, Trends in Neurosciences, 16(10): 403-409 (Oct. 1993). |
Seubert et al., “Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids”, Nature, 359: 325-327 (Sep. 24, 1992). |
Smits et al., “Prion Protein and Scrapie Susceptibility”, Vet. Quart., 19(3): 101-105 (Sep. 1997). |
Stoute et al., “A Preliminary Evaluation of a Recombinant Circumsporozoite Protein Vaccine Against Plasmodium Falciparum Malaria”, N. Engl. J. Med., 336(2): 86-91 (1997). |
Sturchler-Pierrat et al., “Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology”, Proc. Natl. Acad. Sci. USA, 94: 13287-13292 (Nov. 1997). |
Weissmann et al., “Bovine spongiform encepalopathy and early onset variant Creutzfeldt-Jakob disease”, Curr. Opin. Neurobiol., 7: 695-700 (1997). |
Wood et al., “Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease”, Proc. Natl. Acad. Sci USA, 94: 1550-1555 (Feb. 1997). |
Andersen et al., “Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer's disease?,” Neurology, 45:1441-1445 (1995). |
Associated Press, “Immune cells may promote Alzehimer's, a study finds,” The Boston Globe (Apr. 13, 1995). |
Bauer et al., “Interleukin-6 and α-2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices,” FEBS Letters, 285(1):111-114 (1991). |
Bodmer et al., “Transforming Growth Factor-Beta Bound to Soluble Derivatives of the Beta Amyloid Precursor Protein of Alzheimer's Disease,” Biochem. Biophys. Res. Comm., 171(2):890-897 (1990). |
Blass, John P., “Immunologic Treatment of Alzheimer's Disease,” New England J. Medicine, 341(22):1694 (1999). |
Brice et al., “Absense of the amyloid precursor protein gene mutation (APP717 : Val->Ile) in 85 cases of early onset Alzheimer's disease,” J. Neurology, Neurosurg. Psychiatry, 56:112-115 (1993). |
Chao et al., “Transforming Growth Factor-β protects Human Neurons Against β-Amyloid-Induced Injury,” Soc. Neurosci. Abstracts, 19:513.7 (1993). |
Felsenstein et al., “Processing of the β-amyloid precursor protein carrying the familial, Dutch-type, and a novel recombinant C-terminal mutation,” Neuroscience Letters, 152:185-189 (1993). |
Finch et al., “Evolutionary Perspectives on Amyloid and Inflammatory Features of Alzheimer Disease,” Neurobiology of Aging, 17(5):809-815 (1996). |
Fisher et al., “Expression of the amyloid precursor protein gene in mouse oocytes and embryos,” PNAS, 88:1779-1782 (1991). |
Flanders et al., “Altered expression of transforming growth factor-β in Alzheimer's disease,” Neurology, 45:1561-1569 (1995). |
Gandy et al., “Amyloidogenesis in Alzheimer's disease: some possible therapeutic opportunities,” TiPS, 13:108-113 (1992). |
Goate et al., “Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease,” Nature, 349:704-706 (1991). |
Gozes et al., “Neuroprotective strategy for Alzheimer disease: Intranasal administration of a fatty neuropeptide,” PNAS, 93:427-432 (1996). |
Haga et al., “Synthetic Alzheimer amyloid β/A4 peptides enhance production of complement C3 component by cultured microglial cells,” Brain Research, 601:88-94 (1993). |
Hardy, John, “New Insights into the Genetics of Alzheimer's Disease,” Annals of Med., 28:255-258 (1996). |
Huberman et al., “Correlation of cytokine secretion by mononuclear cells of Alzheimer's patients and their disease stage,” J. Neuroimmunology, 52:147-152 (1994). |
Hyman et al., “Molecular Epidemiology of Alzheimer's Disease,” N. E. J. Medicine, 333(19):1283-1284 (1995). |
Itagaki et al., “Relationship of microglia and astrocytes to amyloid deposits of Alzheimer's disease,” J. Neuroimmunology, 24:173-182 (1989). |
Kalaria, R. N., “Serum amyloid P and related molecules associated with the acute-phase response in Alzheimer's disease,” Res. Immunology, 143:637-641 (1992). |
Kawabata et al., “Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein,” Nature, 354:476-478 (1991). |
Lampert-Etchells et al., “Regional Localization of Cells Containing Complement C1q and C4 mRNAs in the Frontal Cortex During Alzheimer's Disease,” Neurodegeneration, 2:111-121 (1993). |
Lannfelt et al., “Alzheimer's disease: molecular genetics and transgenic animal models,” Behavioural Brain Res., 57:207-213 (1993). |
Meda et al., “Activation of microglial cells by β-amyloid protein and interferon-γ,” Nature, 374:647-650 (1995). |
Miller et al., “Antigen-driven Bystander Suppression after Oral Administration of Antigens,” J. Exp. Med., 174:791-798 (1991). |
New York Times National, “Anti-Inflammatory Drugs May Impede Alzheimer's,” (Feb. 20, 1994). |
Quon et al., “Formation of β-Amyloid protein deposits in brains of transgenic mice,” Nature, 352:239-241 (1991). |
Rogers et al., “Complement activation by β-amyloid in Alzheimer Disease,” PNAS, 89:1-5 (1992). |
Rossor et al., “Alzheimer's Disease Families with Amyloid Precursor Protein Mutations,” Annals of New York Academy of Sciences, 695:198-202 (1993). |
Selkoe, Dennis J., “Amyloid Protein and Alzheimer's Disease . . . ,” Scientific American, pp. 68-78 (11/91). |
Selkoe, Dennis J., “In the Beginning . . . ,” Nature, 354:432-433 (1991). |
Selkoe, Dennis J., “The Molecular pathology of Alzheimer's Disease,” Neuron, 6:487-498 (1991). |
Selkoe, Dennis J., “Alzheimer's Disease: Genotypes, Phenotype, and Treatments,” Science, 275:630-631 (1997). |
Shiosaka, Sadao, “Attempts to make models for Alzheimer's disease,” Neuroscience Res., 13:237-255 (1992). |
Solomon, B., “New Approach Towards Fast Induction of Anti β-Amyloid Peptide Immune Response,” Department of Molecular Microbiology & Biotechnology, Tel-Aviv University, ramat Aviv, Tel-Aviv, Israel. |
Tanaka et al., “NC-1900, an active fragment analog of arginine vasopressin, improves learning and memory deficits induced by beta-amyloid protein in rats,” European J. Pharmacology, 352:135-142 (1998). |
Trieb et al., “Is Alzheimer beta amyloid precursor protein (APP) an autoantigen? Peptides corresponding to parts of the APP sequence stimulate T lymphocytes in normals, but not in patients with Alzheimer's disease,” Immunobiology, 191(2-3):114-115 Abstract C.37, (1994). |
Verbeek et al., “Accumulation of Intercellular Adheasion Molecule-1 in Senile Plaques in Brain Tissue of patients with Alzheimer's Disease,” Amer. Journ. Pathology, 144(1):104-116 (1994). |
Walker et al., “Labeling of Cerebral Amyloid In Vivo with a Monoclonal Antibody,” J. Neuropath. Exp. Neurology, 53(4):377-383 (1994). |
Weiner et al., “Oral Tolerance: Immunologic Mechanisms and Treatment of Animal and Human Organ-Specific Autoimmune Diseases by Oral Administration of Autoantigens,” Annu. Rev. Immunol., 12:809-837 (1994). |