This invention concerns the field of utility meters that are monitored and managed from at least one utility management center through at least one intermediate data concentrator in a communication network.
The on-going deregulation in worldwide energy distribution markets is driving the need for smart utility distribution grids and smart meters, enabling both utility providers and consumers to monitor the detailed consumption of an end user at any time through open communication networks. The electrical energy market is particularly concerned as of today but related issues are also relevant to other utility markets such as water or gas.
While a number of legacy meters already implement some point-to-point Automated Metering Reading (AMR) protocols using for instance standard optical or modem interfaces, they are not able to interact with either the end user home area network devices or the remote utility monitoring facilities using wireless or power line communication networks. The industry answer to this regulatory requirement in the next decade will therefore consist in swapping the legacy meters for so-called smart meters.
Smart meters enable utility providers to monitor the detailed consumption of an end user at any time through open communication networks. The consumption measurement sampling granularity can then be much finer than in legacy systems where the meters were manually controlled about once a year. It is also possible to support multiple tariffs from different providers and adapt them much more frequently in accordance with the finer measurement periods.
From the utility provider perspective, as there will be no more local measurement and physical control of the meter functionality by authorized personnel, the smart metering architecture needs careful design to ensure secure, tamper resistant and trusted data collection and transmission from the smart meters to the provider utility services facility. Various solutions can be defined based on state of the art cryptography protocols and a key management system under the control of the utility provider. Those solutions typically require the smart meter to generate its measurement reporting messages specifically for a given utility provider. In a deregulated market where the smart meter is able to negotiate its tariffs with multiple providers, this results in increased bandwidth and processing needs as well as tamper resistant design complexity, manufacturing costs and maintenance costs for the utility meters.
The document WO 01/06432 discloses a computer aided analysis for finding the optimal buying alternative provided by one or more energy suppliers in order to automatically acquire the optimal energy supplies possible in real-time. To this end, this document suggests an analysis module, that has to be installed at the end user side, in order to track in real-time multiple fuel pricing models allowing for immediate switching of alternate energy sources based on price and time-of-use energy patterns. The rate analysis module allows users to make comparisons between multiple rates and determine which rate plan provided by which energy seller is best suited to their needs.
The document US2004/0225625 discloses a rate engine that receives inputs such as utility data and rate data and generate a cost data on a per logging interval basis. Data, such as usage/consumption measurements, collected by the measuring device (utility meter) is transported over the network to the rate engine. Additionally, one or more utility management entities (such as electric, water or gas suppliers) that manage the provisioning of utility are coupled with the utility and may publish rate data via a rate data server through the network. The rate engine receives various inputs including, utility data, rate data, time data and optional meta data (e.g. billing period id, cost center id, geographic location, etc. . . . ). The output may be one or more time intervals, with a cost associated with each time interval.
However, while keeping in mind that reporting data refers simultaneously to millions of utility meters, none of these documents suggests means for optimizing as far as possible the management of exchanged data in order to save bandwidth and computing resources. Besides, these documents merely suggest exchanging communications through known network without taking care from hacking and tampering caused by certain malicious persons.
There is therefore a need for a more flexible smart metering network topology to optimize the smart metering operations, communications, and security.
The present invention suggests a secured metering reporting communication method for pricing of utility consumptions metered by utility meters within a communication network comprising at least one data concentrator proxy located as intermediate device between utility meters and at least one utility provider. More particularly and in accordance with the preferred embodiment, the present invention refers to a pricing method for utility consumptions within a smart grid comprising a plurality of utility meters each associated and connected to at least one utility management center through an intermediate data concentrator identified by a data concentrator identifier DCid, each utility meter being identified by a utility meter identifier Uid and being adapted to produce and send, thanks to securing means, secured utility meter messages DTupu,c to the data concentrator, each of the data concentrators being adapted to produce and to send secured reports to management centers which are each identified by a management center identifier Pid, this method comprising the steps of:
The present invention also refers to a system for implementing the above mentioned method.
The present invention will be better understood thanks to the attached figures in which:
The proposed solution comprises a data concentrator which is connected both to the smart meter and to a number of utility providers.
Each utility management center P1, P2, P3 implements various utility management processes such as data management billing, load management and outage control, and queries and controls the data concentrators C1, C2, C3, C4 accordingly through the smart grid global communication network links Lpc.
Each data concentrator C1, C2, C3, C4 comprises functional components in charge with enforcing meter usage monitoring and reporting to the utility management center by means of secure communications with the individual meters through the local communication network links Luc on the one hand and with the utility providers management centers through the global smart grid network links Lcp on the other hand.
Each communication network link Lcp, Luc from
In a deregulated market, each end user can choose its preferred utility provider. For instance utility provider P2 is selected for utility meters U1 and U3 while utility provider P1 is chosen for utility meter U2. As utility offerings evolve towards a finer granularity and more frequent renewal of the tariffs, the utility meters have to process them accordingly and report their utility consumption at a higher rate than before, for instance every 15 minutes. This overloads both the limited meter processing power and the communication network between the utility providers and the utility meters.
This problem is avoided by a distributed computing system in which the data concentrator C establishes secure communications with each utility provider, receives the tariffs table and relevant information such as the amount of available utility that can be delivered to the individual meters from each utility provider, and selects the best offering based on this information. Advantageously, by obtaining information relating to the amount of available utility that can be delivered by each provider, the data concentrators can efficiently manage, at an early stage, the demands of end users in relation to the feeding possibilities of each provider. The utility provider may be a commercial provider, a state-controlled provider or even an end-user installation producing some utility amount that is re-injected into the utility delivery network.
The data concentrator C further establishes secure communications with each utility meter U, receives the regular utility consumption reports DTupu,c from each utility meter U, and separately computes a consolidated report RTupu,p intended for each utility provider P in line with the former offering selection. The advantage of this solution is that the utility meter only needs to establish, encrypt and sign one DTupu,c message for the data concentrator C at any time, regardless of which utility provider is actually feeding it, to report its consumption without having to bear the selection of the detailed tariff which evolves over time and the computation of the consumption invoicing report accordingly. The utility meter messages DTupu,c typically comprise at least one time and date DT and the metering counter consumption index CPT measured by the utility meter U at this time and date DT, or the metering counter differential consumption value ΔCPT measured between a first time T1, e.g. the former transmitted time and date DTprev, and a second time T2, e.g. the current time and date DTcurr. In a simpler mode of implementation where the utility meter and the data concentrator communicate synchronously, i.e. on the basis of synchronized clocks where one clock is located within the utility meter and the other within the data concentrator, only the utility meter consumption index is transmitted to the data concentrator which is in charge with measuring the corresponding date and time. However, it should be noted that these two clocks do not need to have the same time basis, for instance the clock located within the data concentrator could be a common clock, whereas the clock of the utility meter could be merely a count-down or a means able to produce pulses. In a further alternative, the utility meter could transmit only its consumption index to the data concentrator, only on request from the latter. For the sake of clarity, it should be noted that the word “index” refers to a number that is counted by the utility meter. For instance, this number can relate to a consumption quantity expressed in KW/h or in m3 or in any other unit depending on the purpose for which the utility meter is used (i.e. whether it is used for metering electricity, water, gas, etc. . . . ).
In order to identify their source and their destination in an open communication network, the DTupu,c message also includes the source utility meter identifier and the destination data concentrator identifier. The latter identifiers may be an integral value uniquely associated with the equipment at manufacturing time, a network address identifier, or any combination thereof.
In order to ensure the integrity of the utility meter messages, they can be further signed so that the data concentrator authenticates that the metering report comes from a genuine utility meter source. In order to ensure the confidentiality of the utility meter messages as desired (for instance to ensure end user consumption data privacy), they can also be encrypted so that the utility meter data is only accessible by the authorized data concentrator destination.
In terms of security design, most smart grid standards require the establishment of a Public Key Infrastructure (PKI) where each node in the network is associated with a pair of public and private asymmetric cryptography keys, for instance a RSA key pair, and a chain of public key certificates signed by a trusted central authority, for instance X.509 certificates. In a simple implementation corresponding to the grid topology of
A tariff table, as represented in
The data concentrator receives at regular intervals, for instance every 15 minutes, from each connected utility meter, a utility report message DTupu,c comprising metering data measurement DTup sent from each connected utility meter, decrypts it as relevant, and verifies its signature. If the message is authenticated, the data concentrator derives the consumption values from the utility meter in the invoicing period interval [DT1, DT2] from the succession of transmitted counter values CPT, or differential values ΔCPT, defined as metering data measurement DTup. If the differential values ΔCPT has not yet been determined by the utility meter itself, the data concentrator derives the difference ΔCPT1,2 between the metering counter value CPT2 at a given time and date DT2 and the metering counter value CPT1 at a given time and date DT1. Thus, depending on the technical nature of the utility meter and its predefined task, the destination data concentrator has to determine the differential conception value ΔCPT on the basis of several metering data measurements. More generally, the metering data measurement DTup may comprise different data namely either:
In one embodiment, the data concentrator C then transmits the calculated difference ΔCPT1,2 to the utility provider P associated with the utility meter U during the tariff period [DT1, DT2]. Therefore, the data concentrator assigns the calculated differential consumption value ΔCPT to the utility management center P1-P3 offering the lowest rate for the time period interval ΔT during which this value ΔCPT has been measured. Thus, this value ΔCPT is sent, preferably together with the utility meter identifier Uid of said utility meter, from the destination data concentrator to the proper utility management center, i.e. the utility management center associated to the rate assigned to the differential consumption value ΔCPT.
In another embodiment, the data concentrator C collects and calculates for a utility meter, a sequence (i.e a plurality) of values ΔCPT1,2, ΔCPT2,3, ΔCPT3,4 for a given reporting period of time ΔRT ([RTa,RTb]), for instance one day, one week or one month, and records them into a memory of the data concentrator, e.g. under a utility meter consumption invoicing report MRupu,c,p. After the end of the reporting period of time RTb, the data concentrator C in the proposed distributed computing system establishes secure communications with each utility provider P among P1, P2, P3 associated with each utility meter U and transmits the collected consumption values ΔCPT to the utility provider P, e.g. by sending the utility meter consumption invoicing report MRupu,c,p. The advantage of this solution is that the utility provider only needs to process one utility meter consumption invoicing report message MRupu,c,p for each reporting period of time, regardless of the actual fine gain granularity of the utility meter consumption reporting and regardless of the actual tariff updates during this period. By providing consolidated reporting messages, the number of reporting messages can be advantageously reduced and, therefore, bandwidth and computing resources can be saved.
In order to identify their source and their destination in an open communication network, the utility meter consumption invoicing report message MRupu,c,p also includes the source utility meter identifier Uid. Preferably, it further includes the destination data concentrator identifier DCid and the utility provider identifier Pid. These identifiers may be an integral value uniquely associated with the equipment at manufacturing time, a network address identifier, or any combination thereof.
In order to ensure the integrity of the utility meter consumption invoicing report message MRupu,c,p, it can be signed so that the utility provider authenticates that the metering report comes from a genuine data concentrator source. In order to ensure the confidentiality of the utility meter consumption as desired (for instance to ensure end user privacy), the utility meter consumption invoicing report message MRupu,c,p can also be encrypted so that the utility meter data is only accessible by the authorized utility provider.
In a further embodiment, the data concentrator C collects and calculates, for a plurality of utility meters which are all associated with a single utility management center (e.g. for each utility meter U1, U3 associated with utility provider P2), and records a sequence of values ΔCPT_U11,2, ΔCPT_U31,2, ΔCPT_U12,3, ΔCPT_U32,3, ΔCPT_U13,4, ΔCPT_U33,4 for a given reporting period of time [RT1,RT2], for instance one day, one week or one month, for each utility meter U1, U3 associated with a utility provider P2, and records them, together with the utility meter identifier Uid to which each of these value refers, into a consolidated utility meter consumption invoicing report CRc,p After the end of the reporting period of time RT2, the data concentrator C in the proposed distributed computing system establishes secure communications with the utility provider P2 associated with the subset of utility meters U1, U3 and transmits the consolidated utility meter consumption invoicing report CRc,p to the utility provider P2. The advantage of this solution is that each utility provider only needs to process one consolidated consumption invoicing report message CRc,p for each data concentrator instead of each utility meter, for each period of time.
In order to identify their source and their destination in an open communication network, the consolidated consumption invoicing report message CRc,p also includes a list of the source utility meters identifiers Uid, the destination data concentrator identifier DCid, and the utility provider identifier Pid. These identifiers may be an integral value uniquely associated with the equipment at manufacturing time, a network address identifier, or any combination thereof.
In order to ensure the integrity of the consolidated consumption invoicing report message CRc,p, it can be signed so that the utility provider authenticates that the metering report comes from a genuine data concentrator source. In order to ensure the confidentiality of the utility meters consumption as desired (for instance to ensure end user privacy), the utility meter consumption invoicing report message CRc,p can also be encrypted so that the utility meters data is only accessible by the authorized utility provider. This makes it possible for the utility providers to collect the utility metering reports for invoicing at a lower rate than they negotiate their offerings with the data concentrators, for instance only once a month, regardless of how often the rate has been updated during the month. As there are many more utility meters than data concentrators and several utility providers serving them in a typical grid topology, significant bandwidth and processing power can be saved overall. This will be illustrated by the following example, given for illustration purposes only and not limitative: if 1000 meters in a local area were to report every 15 minutes to 5 possible utility providers, each of them would need to generate, secure and transmit 24*4*5=4800 messages per day and each utility provider would need to receive and process 24*4*1000=96000 messages per day just for this local area. With one possible proposed solution, the utility meter only generates, secures and transmits 24*4 messages per day to the data concentrator and does not need to establish individual secure communication channels with the 5 utility providers. The data concentrator is in charge with locally computing and consolidating the 1000 utility metering reports based on the preselected offerings and corresponding tariff tables from the 5 utility providers. It can then consolidate invoicing reporting to at most 5 providers, for instance only just once a day for 1000 utility meters, i.e. the utility provider only needs to receive and process max 1000 individual messages or one consolidated message for 1000 utility meters per day.
In the case where the network between the data concentrator and the utility meter is not reliable, it may occur that a utility metering message DTup is lost. In that configuration it is preferable to transmit, as metering data measurement DTup, the counter index CPT rather than a relative differential value ΔCPT, so that the data concentrator can still interpolate the missing consumption value from the last received one and the current one and derive an acceptable consumption invoice accordingly.
Alternately, the data concentrator may also send a receipt acknowledgement and/or a retransmission query to the utility meter.
Given that providers, intermediate data concentrators C1-C4 and utility meters U1-U8 are interconnected between them within the communication network and given that the sender and the recipient(s) are identified in the exchanged messages by means of identifiers Uid, DCid, Pid, therefore messages sent to a specific recipient (e.g. a data concentrator DCid or a provider Pid) can be advantageously re-routed by an alternate recipient to the appropriate recipient. Such a roaming can be performed by an intermediate data concentrator or by a provider that would receive a message (e.g. a utility meter message DTupu,c or utility meter consumption invoicing report message MRupu,c,p), whereas it is not the appropriate recipient of this message. Such a roaming can be applied for instance if the message of the sender cannot reach its recipient for many reasons, such as for temporarily maintenance reasons or failure in the communication towards a certain recipient.
The data concentrator may also further send information about the actual offering and/or invoicing as relevant to the end user, periodically, for instance after reporting consolidation to the utility providers.
The data concentrator may also further send a configuration message to the utility meter to update its reporting rate.
Preferably, each time messages or reports have to be exchanged, the method of the present invention performs a step aiming to establish a secure communication respectively for each utility meter U1-U8 connected to the destination data concentrator C1-C4 and for each data concentrator C1-C4 connected to said utility management center P1-P3. This communication being secured by signing and encrypting messages and reports respectively processed by the destination data concentrator C1-C4 and by the utility management center P1-P3. Messages and reports are processed only if they are identified as being authentic by authentication means.
The present invention also refers to a system able to implement the above disclosed method. To this end, it suggests a pricing system for utility consumptions within a smart grid comprising a plurality of utility meters U1-U8, these utility meters being each associated and connected to at least one utility management center P1-P3 through an intermediate data concentrator C1-C4, each data concentrator is identified by a data concentrator identifier DCid and each utility meters U1-U8 is identified by a utility meter identifier Uid. These utility meters are adapted to produce and send secured utility meter messages DTupu,c towards the data concentrator with which they are connected or associated. Each data concentrator is adapted to produce and send secured reports to the management centers P1-P3, in particular to all management centers associated with the utility meters processed by this data concentrator, each management center being identified by a management center identifier Pid, this system comprising:
All of the above-mentioned means can be carried out by specific modules comprising electronic components able to achieve the functions to which each of those modules refer.
According to one embodiment, each utility meter of the system further comprises a clock readable by said measuring means for including, to the metering data measurement DTup, a time and date DT corresponding to the moment when the counter consumption index CPT was measured.
According to another embodiment, the destination data concentrator of the system comprises a memory for collecting, during a reporting period of time ART, a plurality of calculated consumption values ΔCPT before sending them to the proper utility management center, for instance within the secured report transmitted by the sending means of the data concentrator at the end of the reporting period of time ART.
Thus, the system of the present invention comprises means for securing the communications exchanged, on the one hand, between the utility meters and the destination data concentrator and, on the other hand, between the latter and at least one utility management center associated with these utility meters. Secured communications are carried out by common means, i.e. by signatures and encryption means applied to the utility meter messages DTupu,c sent by the utility meters and to the reports sent by the destination data concentrator. Therefore, the system is provided with means for acquiring public key certificates, means to authenticate these certificates, means for producing session key (typically random session key), means for encrypting and decrypting messages with these keys and means for sending and receiving acknowledgment messages in case of completely successful transmission.
Number | Date | Country | Kind |
---|---|---|---|
11179338.6 | Aug 2011 | EP | regional |
This application is a National Stage of International Application No PCT/EP2012/066809, which claims priority to European patent Application No. EP 11179338.6, filed Aug. 30, 2011 and to U.S. Provisional patent Application No. 61/528,826, filed Aug. 30, 2011.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/066809 | 8/30/2012 | WO | 00 | 2/28/2014 |
Number | Date | Country | |
---|---|---|---|
61528826 | Aug 2011 | US |