A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure as it appears in the Patent and Trademark Office, patent file or records, but otherwise reserves all copyright rights whatsoever.
The present invention relates generally to the field of power conversion. More particularly, the invention relates to switching mode power supplies with regulated output current.
With the aggressive growth of battery powered portable electronics, e.g., cell phones, the demand for lower cost, lighter weight and better efficiency battery chargers is very high. Historically, linear power supplies have been employed. However, despite being low in cost, they cannot generally outperform switching mode power supplies, which have lower weight and much higher efficiency. For many applications, the Flyback converter is often chosen from among different switching mode topologies to meet this demand due to its simplicity and good efficiency.
Over the years, various integrated circuit (IC) chips have been developed and used to build constant current Flyback power supplies. For example,
Some known approaches for primary feedback control of constant output current switching regulators teach the use of a reflected auxiliary winding voltage or current to control the primary inductor peak current. One known deficiency of such known methods is that the output current constant control is applicable only in discontinuous conduction mode (DCM) operation, thereby limiting the power capability of the power converter. For operation in continuous conduction mode (CCM), current industry solutions almost entirely rely exclusively on the use of an optocoupler as shown in
In view of the foregoing, what is needed is a relatively low-cost and effective control methodology of regulating the primary side output current of a Flyback converter. It would be desirable if at least some of the foregoing limitations of the prior art are overcome for operation in both continuous current mode (CCM) and discontinuous mode (DCM), preferably with a minimal number of IC chips (e.g., two IC chips). It is further desirable that the need for a secondary circuit and optical coupler are eliminated, and that the output current of a Flyback converter be largely insensitive to temperature variations.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Unless otherwise indicated illustrations in the figures are not necessarily drawn to scale.
To achieve the foregoing and other objects and in accordance with the purpose of the invention, a variety of techniques to regulate the output current of a switching regulator are described.
Some embodiments of the present invention provide a primary side, constant output current PWM controller system and/or IC for a switching regulator with a transformer having at least a primary, a secondary, and an auxiliary winding, where the system or regulator includes: a reference signal for setting the output current level of the switching regulator; a transformer reset time detector that has a feedback input for the auxiliary winding of the transformer used in a switching regulator and computes a transformer reset time signal based on the auxiliary winding feedback input; a multiplier, which outputs a calculation (e.g., multiplication) on signals that is derived from a feedback signal corresponding to the output current of the switching regulator and the transformer reset time signal, the output of the multiplier being operable as a calculated output current; an error amplifier, which outputs a signal based on the difference between the reference signal and the calculated output current; a comparator that is configured to compare one or more ramp signals such as, without limitation, the output of the calculator unit, the error amplifier output and/or the output current feedback signal; a PWM controller module that outputs a PWM switching regulator control signal based on an oscillator output and the comparator output; and a gate drive module that receives the PWM control signal and generates a corresponding gate drive signal operable for properly turning on and off a switched power output device of the switching regulator.
A multiplicity of other embodiments may further provide variations of the prior embodiments in which the reference signal is a programmable current mirror circuit operable to output a programmed current; and/or in which the switched power output device is a power MOSFET that is configured as the main power switch of the switching regulator; and/or embodiments further include a current sensing circuit for generating the output current feedback signal where the current sensing circuit optionally comprises a MOSFET connected in parallel with the switched power output device; and/or in which the comparator is a peak current mode PWM comparator with a slope-compensation input.
Another embodiment of the present invention provides means for achieving the functions described in the foregoing system embodiments.
In yet other embodiments of the present invention, a constant output current PWM controller printed circuit board (PCB) module is described that includes a PCB and an embodiment of the foregoing integrated circuit device joined onto the PCB, where the PCB can be optionally populated with the necessary electronic components such that, in functional combination with the integrated circuit (IC) device, the PCB module is operable to perform as a constant current switching regulator.
A method, according to another embodiment of the present invention, is provided for regulating the output current of a Flyback converter from the primary side, and such method includes steps for: computing a calculated output current based on the average current of a primary power switch and a transformer reset time, regulating the output current of the Flyback converter to a desired value, and reducing the temperature sensitivity of the output current.
Other features, advantages, and object of the present invention will become more apparent and be more readily understood from the following detailed description, which should be read in conjunction with the accompanying drawings.
The present invention is best understood by reference to the detailed figures and description set forth herein.
Embodiments of the invention are discussed below with reference to the figures. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. For example, it should be appreciated that those skilled in the art will, in light of the teachings of the present invention, recognized a multiplicity of alternate and suitable approaches, depending upon the needs of the particular application, to implement the functionality of any given detail described herein, beyond the particular implementation choices in the following embodiments described and shown. That is, there are numerous modifications and variations of the invention that are too numerous to be listed but that all fit within the scope of the invention. Also, singular words should be read as plural and vice versa and masculine as feminine and vice versa, where appropriate, and alternatives embodiments do not necessarily imply that the two are mutually exclusive.
The present invention will now be described in detail with reference to embodiments thereof as illustrated in the accompanying drawings.
In the embodiment shown, calculation unit 406 performs multiplication between IP
Error amplifier 404 then compares the calculated output current with a programmed value across resistor 403. Resistor 407 and capacitor 408 are coupled to form an averaging circuit for the primary current. Resistor 409 and capacitor 410 form a compensation network for amplifier 404. Comparator 412 serves as a peak current mode PWM comparator with an optional slope compensation input. In other embodiments of the present invention (not shown), the comparator may be configured by those skilled in the art to compare any suitable ramp signals depending upon the needs of the particular application. System oscillator 411 provides an optional frequency jittering function that widens the frequency spectrum and achieves a lower conducting EMI emission. An example of a preferred frequency jittering circuit is described in connection with
Alternate embodiments of the present invention may not include the frequency jittering function in system oscillator 411 and/or slope compensation. In many applications, slope compensation and the system oscillator jitter function can improve converter operation in certain input/output operating conditions; however, these functions are completely optional, whereby alternate embodiments of the present invention may not include either one or both.
PWM control unit 417 then generates the correct PWM waveform by utilizing a cycle-by-cycle current limiting function. MOSFET 413 is a relatively high speed MOSFET gate driver. Power internal MOSFET 415 serves as the main switch, while a small die size allocated internal MOSFET 414 and resistor 416 form a current sense circuit. As will be readily apparent to the system designer, some applications may not require resistor 416 to generate the current sensing voltage feedback or it may be located in other circuit configurations, or embedded into other system components. As will be readily recognized by those skilled in the art, depending upon the needs of the particular application and current technology, the power MOSFET may be formed in any suitable manner. By way of example, and not limitation, the power MOSFET may be comprised of a multiplicity of smaller MOSFET device to form a single power MOSFET. In contrast with conventional approaches that only work in DCM, the present embodiment implements a method for using “sampled Auxiliary Flyback Voltage” to control the primary current. Sampling the Auxiliary Flyback Voltage at a known time point provides a more accurate representation of the actual output voltage in most applications. The present embodiment is largely independent of auxiliary voltage and/or current by, for example, basing output current control only on primary current sensing and the ratio of T_R/T_ON, which works in both DCM and CCM. Hence, embodiments of the present invention preferably do not use auxiliary voltage to control primary current by essentially scaling the peak current (IPEAK) as proportional to a square root of the output voltage, as is done in conventional approaches.
Iout=(½)·(IS1+IS2)·(Tr/T). (1)
Because
IS1=(NP/NS)·IP1 (2)
and
IS2=(NP/NS)·IP2, (3)
Iout may be expressed by combining (1), (2) and (3) as shown in (4) below.
Iout=(½)·(NP/NS)·(IP1+IP2)·(Tr/T). (4)
Furthermore, because
IP
equations (4) and (5) may be combined to express Iout as shown in (6) below
Iout=(NP/NS)·(Tr/TON)·IP
Iout=(½)·IS2·(Tr/T). (7)
Because IS2=(NP/NS)·IP2,(8)
Iout may be expressed by combining (7) and (8) as shown in (9) below:
Iout=(½)·(NP/NS)·IP2·(Tr/T). (9)
Furthermore, because
IP
Iout may be expressed by combining (9) and (10) as shown in (11) below
Iout=(NP/NS)·(Tr/TON)·IP
The output power of the converter generally depends only on the stored energy of the inductor in DCM operating mode, in accordance with the following formula (12), which neglects efficiency losses:
Vo*Io=(½)*Lp*Ip2*F. (12)
In the CCM operating mode, at the output of the converter output, the voltage is dropping from Vnorm to zero. To keep Io constant, F is preferably reduced proportionally to Vo while maintaining a fixed Ip.
The functional blocks shown in the prior embodiments may be implemented in accordance with known techniques as will be readily apparent to those skilled in the art. However, some embodiments of the present invention include implementation approaches that are not conventional. For example, without limitation, the foregoing jitter functional block may be implemented as follows.
Having fully described at least one embodiment of the present invention, other equivalent or alternative methods of implementing a primary side constant output current controller according to the present invention will be apparent to those skilled in the art. The invention has been described above by way of illustration, and the specific embodiments disclosed are not intended to limit the invention to the particular forms disclosed. The invention is thus to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the following claims.
The present utility patent application claims priority benefit of the U.S. provisional application for patent having Ser. No. 60/691,980, filed on Jun. 16, 2005, under 35 U.S.C. 119(e). The contents of this related provisional application are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4301497 | Johari | Nov 1981 | A |
4849869 | Tanuma et al. | Jul 1989 | A |
4894662 | Counselman | Jan 1990 | A |
5363288 | Castell et al. | Nov 1994 | A |
5436550 | Arakawa | Jul 1995 | A |
5754414 | Hanington | May 1998 | A |
5841643 | Schenkel | Nov 1998 | A |
6229366 | Balakirshnan | May 2001 | B1 |
6239558 | Fujimura et al. | May 2001 | B1 |
6696882 | Markowski et al. | Feb 2004 | B1 |
6704380 | Kaewell | Mar 2004 | B1 |
6721192 | Yang | Apr 2004 | B1 |
6864644 | Kernahan | Mar 2005 | B2 |
6944034 | Shteynberg et al. | Sep 2005 | B1 |
6958920 | Mednik et al. | Oct 2005 | B2 |
6967472 | Balakrishnan | Nov 2005 | B2 |
7019506 | Kernahan | Mar 2006 | B2 |
7061780 | Yang et al. | Jun 2006 | B2 |
7088598 | Yang et al. | Aug 2006 | B2 |
20010032685 | Nakajima et al. | Oct 2001 | A1 |
20020039298 | Riggio et al. | Apr 2002 | A1 |
20040046543 | Choi | Mar 2004 | A1 |
20040075600 | Vera et al. | Apr 2004 | A1 |
20050197791 | Matsumoto | Sep 2005 | A1 |
20050202570 | Pusiol | Sep 2005 | A1 |
20050275386 | Jepsen et al. | Dec 2005 | A1 |
20060002155 | Shteynberg et al. | Jan 2006 | A1 |
20060077697 | Yang | Apr 2006 | A1 |
20060113973 | Fukumoto et al. | Jun 2006 | A1 |
20060133117 | Berghegger | Jun 2006 | A1 |
20080007982 | Piper et al. | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20060285365 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
60691980 | Jun 2005 | US |