1. Field of the Invention
The invention relates to primers designed on base of the difference of sequences among staphylococcal enterotoxin subtypes, and to a PCR method for detecting subtypes (i.e., C1, C2 and C3) of staphylococcal enterotoxin type C by using the above-mentioned primers. The invention relates also to DNA probes useful for the identification of subtypes C1, C2 and C3 of staphylococcal enterotoxin type C in various food and clinical samples.
2. Description of the Prior Art
Staphylococcal aureus is one of the important pathogens for food poisoning. Staphylococcal aureus can produces a variety of staphylococcal enterotoxin, i.e. staphylococcal enterotoxin A-B-C-D-E and also, to a lesser extent, G-H-I and J (Genigeorgis, 1989; Betley and Harris, 1994; Su and Wong, 1995; Munson et al., 1998; Zhang. et al., 1998).
Staphylococcal enterotoxin C comprises a group of highly conserved proteins, and exhibits a considerable immunological crossover reaction (Marr. et al., 1993). Protein sequence of staphylococcal enterotoxin C present predominantly subtypes of SEC1, C2 and C3 and other minor subtypes (Bohach and Schlievert, 1987; Couch and Betley, 1989; Hovde. et al., 1990; Marr et al., 1993). Since homologies of the amino acid sequences among subtypes C1, C2 and C3 of staphylococcal enterotoxin C are greater than 98% (Bohach and Schievert, 1987; Hovde. Et al., 1990; Betley. et al., 1992), the identification thereof is not easy.
At present, methods for detecting staphylococcal enterotoxin types include, for example, commercially available immuno-detecting kit based on the serological characteristics of staphylococcal enterotoxin, such as, staphylococcal enterotoxin reverse phase latex agglutination (SET-RPLA) kit (Denka. Seiken, Tokyo, Japan); and kits developed based on enterotoxin themselves, such as staphylococcal enterotoxin ELISA (SET-EIA) (Sarasota, Fla., USA) or TECRA (Bioenterprises Pty. Ltd, Roseville, Australia). These kits detect mainly staphylococcal enterotoxin A, B, C, D and E. No publication in literatures reported any DNA assay for the identification of staphylococcal enterotoxin subtypes C1, C2 and C3. As detecting method by means of a gene, though there was a study for detecting staphylococcal enterotoxin types A, B, C, D and E by polymerase chain reaction (PCR) with a specific DNA probe (Johnson. et al., 1991; Tsen and Chen, 1992; Tsen et al., 1994; Schmitz. et al., 1998), no DNA probe or PCR method is available for subtyping staphylococcal enterotoxin C1, C2 and C3, except of the PCR primers for the identification of staphylococcal enterotoxin subtypes C1, C2 and C3 developed by the invention. Moreover, in case of food poisoning and large-scale food poisoning caused by staphylococcal enterotoxin type C, no method is available for identify further the subtype of the staphylococcal enterotoxin type C.
There are a few relating patents such as, for example, ROC patent No. 80100762 titled “Rapid identification of Staphylococcal aureus by the agglutination of micro-latex particles”; ROC patent No. 82106016 titled “Rapid identification of Staphylococcal aureus in processed food by enzymatic immunological analytical method”; EP 1160333A2, “Oligonucleotides and method for detection of mecA gene of methicillin-resistant Staphylococcus aureus”; U.S. Pat. No. 6,022,682, “Article and method for detection of enterotoxigenic staphylococci (1996)”; U.S. Pat. No. 563,536 (1995) 7, “Method for detecting staphylococci”; U.S. Pat. No. 5,582,974, “Nucleic acid probes for the detection of Staphylococcus aureus (1993)”; U.S. Pat. No. 5,443,963, “Method for detecting staphylococci (1994)”; U.S. Pat. No. 5,132,210 (1989), “Diagnostic test for Staphylococcal mastitis”; U.S. Pat. No. 4,849,341 (1986), “Diagnostic test for Staphylococcal mastitis in cattle”; U.S. Pat. No. 5,770,375 (1997), “Probe for diagnosing Staphylococcus epidermidis”; U.S. Pat. No. 5,776,712 (1998), “Methods and materials for the detection of Staphylococcus aureus”; U.S. Pat. No. 5,496,706 (1996), “Methods and materials for the detection of Staphylococcus aureus”; U.S. Pat. No. 5,437,978 (1993), “Detection for Staphylococcus spp.”; and U.S. Pat. No. 5,702,895 (1996), “Method and kit for detecting methicillin-resistant Staphylococcus aureus”.
Accordingly, the main object of the invention is to provide primers useful in the polymerase chain reaction for the identification of subtypes C1, C2 and C3 in staphylococcal enterotoxin type C, which primers are designed based on parts of gene sequences with greater difference among of staphylococcal enterotoxin subtypes C1, C2 and C3, and which are assigned into three pairs of PCR primers with following specificities:
Another object of the invention is to provide a method for the identification of subtypes of staphylococcal enterotoxin C, in order to identify further the subtype of the staphylococcal enterotoxin type C in case of food poisoning and large-scale food poisoning caused by staphylococcal enterotoxin type C.
Yet another object of the invention is to provide DNA probes useful in PCR reaction for the identification of subtypes C1, C2 and C3 in staphylococcal enterotoxin type C, which probes comprise of the above primers ENTC1-ENTC2 ENTC3 based on the specificities of above-mentioned primers with respect to staphylococcal enterotoxin subtypes C1, C2 and C3 gene.
The invention, as well as its many advantages, may be further understood by the following detailed description and drawings in which:
The invention will be now described below with reference to the drawings.
Reagents and Materials:
A. Bacterial Strains:
Standard strains used in the method according to the invention and sources thereof listed in Table 1 are consisted of 10 S. aureus strains producing enterotoxin of types A, B, C1, C2, C3, D, E, G, H, I and 1 strain producing toxic shock syndrome toxin-1 (TSST-1). Table 2 lists other non-S. aureus, including Bacillus cereus, Bacillus coagulars, Micrococcus varians, Staphylococcus epidermidis, Streptococeus mutans, Escherichia col. Table 3 lists 39 S. aureus strains producing enterotoxin C, which were provided by the Third Branch of Disease Control Agency, Department of Health, Taiwan, ROC (previously the Middle Examination Station of the Preventive Medical Institute) and were isolated from samples collected in food poisoning cases during 1995 to 2000. Table 4 lists 10 S. aureus strains producing enterotoxin of type C provided by the Food Research Center (FRI) of the University of Wisconsin, Madison, Wis., USA.
B. Media:
The medium used in the method according to the invention contains, as ingredients, Tryptic Soy Broth (TSB), Brain Heart Infusion (BHI), Baird-Parker agar base (BP), Mueller-Hinton agar, Plate Count Agar (PCA), and Egg Yolk Tullurite (EY) (all available from Detroit, Mich. USA).
C. Reagents:
Reagents used in the method according to the invention include Sodium dodecyl sulfate (SDS), Ethylenediamine tetra-acetic acid (EDTA), lysozyme, RNase and mineral oil (all available form Sigma Chemical Company, St. Louis, Mo., USA). Tris-(hydroxymethyl)-aminomethane, Triton X-100, proteinase K, dATP, dCTP, dGTP and dTTP (Boegeringer Mannhein GmbH Biochemica, Mannheim, Germany); Lysostaphin (Applied Microbiology, New York, USA); Agarose (Bio-Rad, Hercules, Calif., USA); N-Lauroylsarcosine Na-salt (Heidelberg, New York, USA); thermo-stable DNA Polymerase, ProZyme, (PROtech Technology Ent. Co., Ltd., USA); 100 bp ladder (Pharmacia, Uppsala, Sweden); chloroform (Alps, Taiwan), MgCl2, NaCl, Sodium Citrate, NaOH, Boric Acid, KCl (Wako Pure Chemical Industry, Ltd., Osaka Japan). All reagents used in the method according to the invention are of reagent grade of molecular biology grade.
D. Immunological Analytical Kits:
Immunological analytical kits, SET-RPLA (Staphylococcal Enterotoxin A, B, C, D, detection kit by Reversed Passive Latex Agglutination) is available from Denka Seiken, Tokyo, Japan).
E. Buffer Solutions:
Buffer solutions used in the method according to the invention are as follow:
1. 50× TAE Buffer:
242 g Tris-HCl, 57.1 ml glacial acetic acid 100 ml 0.5 M EDTA, pH8.0, and water to 1000 ml.
2. PIV Buffer:
1 M NaCl, 10 mM EDTA, pH 7.6.
3. Chloroform-Isoamyl Alcohol Mixture:
Chloroform and isoamyl alcohol mixed at volume ratio of 24:1.
4. Lysostaphin Buffer (EC Buffer)
6 mM Tris-HCl (pH 7.6), 1 M NaCl, 100 mM EDTA, 0.5% Brij 58, 0.2% deoxycholate, and 0.5% sodium lauroyl sacosin.
5. 10× PCR Buffer
100 mM Tris-HCl, pH 8.3; 500 mM KCl, 60 mM MgCl2, 0.1% Gelatin, and 1% Triton X-100.
F. PCR Thermocycler:
PCR thermocycler used in the PCR is the Perkin Elmer Gene Amp PCR system 9600 (Perkin-Elmer Coporation, Norwalk, Conn., USA).
G. Detection of Staphylococcal Enterotoxin
Detection of staphylococcal enterotoxin is carried out by RPLA according to the instruction provided by Denka Seiken and comprises following steps:
1. Production of Staphylococcal Enterotoxin
S. aureus on a TSA slant was inoculated in 5 ml BHI broth at 37° C., and incubated by shaking at 160 rpm for 18˜24 hours.
2. Treatment of Samples
One ml aliquot of the above bacterial suspension was centrifuged in a 1.5-ml micro-centrifuge tube at 3000 rpm for 20 minutes. The supernatant thus obtained was used for assay.
3. RPLA Assay
To each well of a V-shaped 96-well plate, 25 μl each of sensitized latex A, B, C, or D was added, and, after shaking at 60 rpm for 10 minutes, was incubated at room temperature for 18-24 hours and then observed the result. Separately, standard enterotoxin A, B, C, and D was added into sensitized latex A, B, C, or D and used as positive control, while standard enterotoxin A, B, C, and D was added into non-sensitized control latex A, B, C, or D and used as negative control.
H. Extraction of Total DNA from Staphylococcus aureus
A platinum ear amount of bacteria was incubated in 3 ml TSB broth at 37° C. for 12 hours. A 0.5 ml aliquot of bacteria suspension was centrifuged in a micro-centrifuge at 5000 rpm for 7 minutes. The supernatant was discarded. After adding 250 μl of lysostaphin buffer and shaking homogeneously, 25 μl lysostaphin (2 mg/ml), 25 μl lysozyme (2 mg/ml), and 20 μl RNase (2 mg/ml) were added and the mixture was reacted at 37° C. for 2-3 hours to a clear solution. 25 μl proteinase K (10 mg/ml) was added and the mixture was reacted again at 65° C. for 3-4 hours to a clear solution. The reaction mixture was then extracted with an equal volume of saturated phenol-chloroform. After centrifuging at 13000 rpm for 10 minutes, the supernatant was transferred to a new micro-centrifuge and extracted again with an equal volume of saturated phenol-chloroform. The procedure was repeated once. Finally, it was extracted once with equal volume of chloroform. To the supernatant thus obtained was added two volume of 95% ethanol and the resulting mixture was allowed to precipitated at −70° C. for 1 hour. Thereafter, the mixture was centrifuged at 13000 rpm for 15 minutes. The supernatant was discarded. The pellet was washed once with 70% ethanol, centrifuged, dried, an appropriate amount of sterile distilled water (30-40 μl) was added to dissolve it and then stored at 4° C. till used.
I. PCR Primers
Since there is a homology of greater than 97% among gene sequences of enterotoxin C1, C2, and C3, the part of sequence having difference among them is used to design primers useful in PCR. For this purpose, sequence data was obtained by searching through Gopher system Internet connected to biological molecular database Gene Bank/EMBL/DDBJ. The sequence data was subjected to multiple sequence format alignment by means of Wisconsin Sequence Analysis Software Package developed by Genetic Computer Group (GCG) to find out the difference among gene sequences, thereby, based on the difference thus obtained, 4 PCR primers having detection specificity to genes of enterotoxin C1, C2 and C3 were designed. These primers were assigned into 3 pairs, ENTC1/ENTCR, ENTC2/ENTCR and ENTC3/ENTCR, having specificity genes of enterotoxin C1, C2 and C3, respectively.
J. Synthesis of Oligonucleotide Primers
Those 4 PCR primers were synthesized with a DNA Synthsizer by Biotechnology Scientific Co., Taipei, Taiwan.
K. Polymerase Chain Reaction
To a 0.65-ml micro-centrifuge, 1 μl each of 10 mM dATP, 10 mM dCTP, 10 mM dGTP, and 10 mM dTTP, 5 μl of 10× PCR buffer, 1 μl each of primers (50 pmol/μl), suitable amount of target DNA, suitable amount of 1 unit ProZyme, and sterile distilled water to a total amount of 50 μl. Finally, the mixture was covered with mineral oil. Reaction conditions used in each set of PCR was listed in Table 5.
L. Test of PCR Specificity and Sensitivity of Primers
(1) Specificity:
To a 0.5-ml micro-centrifuge was added a formulated PCR reaction solution with a composition of: 200 μM dNTP (N=A-T-G-C), 1× PCR buffer, 25 or 50 pmole primers, a suitable amount of DNA, 0.4 unit Prozyme, and sterile distilled water to a total volume of 50 μl, and the mixture thus prepared was covered with one drop of mineral oil. Thereafter, the micro-centrifuge was placed in a PCR thermocycler and a three-step PCR was carried out under following conditions: 20 seconds at 94° C. to denaturing DNA into single strand; 35 cycles of lowering the temperature to the annealing temperature for each set of primers (Table 5), keeping at this temperature for 20 seconds for annealing the primers and raising the temperature to 72° C. for 30 seconds for polymerase extension; and finally, keeping at 72° C. for 5 minutes. All steps were controlled by the computer program and 10 μl aliquots of PCR products were taken for analysis as described below. Each sample was analyzed by electrophoresis on 2.0% agarose in 1× TAE buffer, stained with ethidium bromide, observed under a UV box and photographed.
(2) Sensitivity:
The bacteria suspension was serially diluted at 10×. DNA extraction was carried out with phenol/chloroform as described above. DNA thus obtained was dissolved in 10 μl sterile distilled water and the resulting solution was added in a previously prepared 40 μl PCR solution (200 μM dNTP, N=A, T, G, C). Thereafter, the solution was covered with one drop of mineral oil and PCR was performed as described above.
The invention will be described more detailed by means of the following non-limiting examples.
Results of the detection and sensitivity test performed on S. aureus stains producing standard staphylococcal enterotoxin C1, C2 and C3 and non-C type strains were listed in Table 1 and 2 as well as shown in
PCR detections with primer sets ENTC1/ENTCR-ENTC2/ENTCR-ENTC3/ENTCR designed according to the invention were carried out on 39 enterotoxin-producing S. aureus strains type C that had been isolated in 20 cases of food poisoning by the Third Branch of the Disease Control Agency, the Health Administration, Executive Yuan, ROC during 1995-2000. PCR and analytical conditions were same as described above. The result is shown in Table 3.
It can be seen from Table 3 that identification of subtype C1, C2 and C3 performed on the above-mentioned 39 enterotoxin-producing S. aureus type C by PCR using primer sets according to the invention revealed one staphylococcal enterotoxin subtype C1, 12 strains of subtype C2, and 13 strains of subtype C3, as well as 13 strains of other type C. Therefore, among those pathogenic S. aureus, staphylococcal enterotoxin subtypes C2 and C3 are the prominent ones with a proportion of about 64%, and only 1 subtype C1 strain, while with about 33% of other subtype Cs.
PCR detections with primer sets ENTC1/ENTCR-ENTC2/ENTCR-ENTC3/ENTCR designed according to the invention were carried out on 10 enterotoxin-producing S. aureus strains type C (FRI strains No 202, 248, 293b, 406, 412, 414, 418, 423, 429, 623) that had been provided by the Food Research Institute (FRI) of the University of Wisconsin, Madison, Wis., USA. PCR and analytical conditions were same as described above. The result is shown in Table 3.
It can be seen from Table 3 that identification of subtype C1, C2 and C3 performed on the above-mentioned 39 enterotoxin-producing S. aureus type C by PCR using primer sets according to the invention revealed 8 staphylococcal enterotoxin strains of subtype C2, 1 strains of subtype C3, and 1 strains of other type C, while no subtype C1. Therefore, this result is similar to that of Example 2, i.e., among those pathogenic S. aureus type C, staphylococcal enterotoxin subtypes C2 and C3 are the prominent ones.
Many changes and modifications in the above-described embodiments of the invention can, or course, be carried out without departing from the scope thereof. Accordingly, to promote the progress in science and the useful arts, the invention is intended to be limited only by the scope of the appended claims.
aEnterotoxin types are according to the information from strain source.
bND: Not determined.
Staphylococcus aureus
S. aureus SEC1
S. aureus SEC2
S. aureus SEC3
S. aureus
Staphylococcus epidermids
Staphylococcus xylosus
Streptococcus mutans
Alcaligenes faecalis
Bacillus cereus
Bacillus psychrophilus
Bacillus subtilis
Bacillus thuringiensis
Brevibacterium linens
Clostridium perfringens
Enterobacter aerogenes
Erwinia carotovora
Escherichia coli
Hafnia alyei
Klebsiella marcescens
Kluyvera ascorbata
Micrococcus roseus
Micrococcus varians
Morganella morganii
Proteus vulgaris
Salmonella enteritdis
Salmonella typhimurium
Serratia marcescens
Proteus vulgaris
Yersinia entreocolitica
aThe number of diseased persons over the number of total attendants.
bFecal samples from selected diseased persons were collected and subjected to SET-RPLA assay by the Third Branch of National Center for Disease Control, Taichung, Taiwan. Randomly selected SEC strains were used in this study.
cSEC subtypes were determined by PCR. SEC strains not grouped in SEC1, C2 and C3 subtypes were termed as other SEC subtype.
aFRI: Food Research Institute, Univ. of Wisconsin, Madison, WI, USA.
bStrain of FRI-293 may belong to SEC subtypes other than SEC1, C2 and C3.
aTotal cycles are 35, the first denature time is 3 min at 94° C., and the final extension time is 3 min at 72° C.