Electro-photography (EP) printing devices form images on print media by placing a uniform electrostatic charge on a photoreceptor and then selectively discharging the photoreceptor in correspondence with the images. The selective discharging forms a latent image on the photoreceptor. Colorant is then developed onto the latent image of the photoreceptor, and the colorant is ultimately transferred to the media to form the image on the media. In dry EP (DEP) printing devices, toner is used as the colorant, and it is received by the media as the media passes below the photoreceptor. The toner is then fixed in place as it passes through heated pressure rollers. In liquid EP (LEP) printing devices, ink is used as the colorant instead of toner. In LEP devices, an ink image developed on the photoreceptor is offset to an image transfer element, where it is heated until the solvent evaporates and the resinous colorants melt. This image layer is then transferred to the surface of the media in the form of an image or text.
The transfer of the ink image from the photoreceptor to the image transfer element is driven by a nip contact and an electric field created by a bias voltage applied to the transfer element.
The present embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
The following description provides illustrative examples of an apparatus and printing process associated with an LEP printing process. However, the examples are presented for the purpose of illustration rather than limitation, and they may therefore be applicable to printing processes other than the LEP printing process described below. An LEP printing device implemented as a digital offset press uses electrically charged ink with a thermal offset print blanket. In an LEP printing press, the surface of a photo imaging component is uniformly charged and then selectively discharged to form a latent image. The photo imaging component is often referred to as a “photoconductor” or a “photoreceptor”, and it will be referred to as such for the remainder of this description. The latent image is formed on the photoreceptor using photo-induced electric conductivity and a laser beam that discharges the electro-statically charged photoreceptor in a pattern consistent with the image. Charged liquid ink is then applied to the surface of the photoreceptor, forming an ink image. The charged ink is attracted to locations on the photoreceptor where surface charge has been neutralized by the laser, and repelled from locations on the photoreceptor where surface charge has not been neutralized by the laser.
The ink image is then transferred from the surface of the photoreceptor to an intermediate transfer media (ITM), referred to herein as the “blanket”, or “print blanket”. Transferring the ink image from the photoreceptor to the print blanket is often referred to as the “first transfer”. Transfer of the ink image from the photoreceptor to the print blanket in the first transfer is driven by rolling nip contact forces (i.e., between the photoreceptor and the blanket) and electrophoresis of the electrically charged ink particles. The electric field between the photoreceptor and print blanket that drives the ink transfer is created by a bias voltage applied to the print blanket. The bias voltage applied to the print blanket may be referred to herein variously as the bias voltage, blanket bias voltage, print blanket bias voltage, ITM bias voltage, or other similar variations. In addition to having a bias voltage applied to it, the blanket is heated and maintained at a high temperature in order to evaporate solvents present in the liquid ink and to partially melt and blend solid ink particles. The high blanket temperature, along with contact pressure between the blanket and an impression drum, facilitate a “second transfer” of the image onto the print media. In the second transfer, the ink image is transferred from the print blanket to the print media (e.g., sheet paper, web paper) by pressing the blanket against the print media which is being held on the impression drum.
Throughout the printing process, the print blanket encounters a number of wear mechanisms that cause damage to the blanket. Damage to the print blanket eventually has a negative impact on the quality of the printed output. Therefore, such wear mechanisms effectively shorten the useful lifespan of the blanket, since printing press operators typically replace print blankets when the print quality begins to suffer. Unfortunately, replacing print blankets is expensive and reduces printer output efficiency because of the time involved in the replacement process.
One common blanket wear mechanism is referred to as blanket memory. Blanket memory can cause damage to a blanket through the continual placement of the same or similar images in the same position on the blanket. As the number of these printed images increases, the blanket wear increases and eventually appears as a defect on other printed images. Another blanket wear mechanism is the repeated pressing of the print media against the blanket, which causes the sharp edges of the media to cut into the blanket. Cut-marks that develop in the blanket can result in a poor transfer of ink within the cut-marks to the print media when subsequently printing larger images that extend beyond the cut-marks. The cut-marks can eventually become visible defects on the printed output.
Yet another blanket wear mechanism is the effect of the high bias voltage applied to the print blanket. During normal printing, in the first transfer that transfers the ink image from the photoreceptor to the print blanket, current flow results from the electrical potential between the photoreceptor and the blanket. However, during a non-productive null cycle, as discussed below, no potential is needed between the photoreceptor and the blanket. The high bias voltage during normal printing can cause a corona breakdown and the formation of plasma between the blanket and photoreceptor that is damaging to the blanket top layer, referred to as the blanket release layer. Ozone is created by corona breakdown, and the impact of the ozone on the print blanket can also cause damage to the blanket release layer. Corona is fundamentally a breakdown phenomenon that follows Paschen's law. It has been determined that a minimum blanket bias voltage employed to achieve an acceptable image transfer from the photoreceptor to the blanket is higher than a threshold value for causing a corona breakdown through the air between the blanket and photoreceptor. In a corona breakdown, the neutral air between dielectric materials such as the photoreceptor and the blanket becomes ionized, resulting in a region of plasma through which current flows between the photoreceptor and the blanket. By way of example, the threshold corona breakdown voltage, or Paschen voltage, may be on the order of about 450V between the photoreceptor and the blanket. However, the minimum blanket bias voltage to achieve an acceptable image transfer may be 500V or higher. Therefore, a challenge remains in the printing process regarding how to achieve an acceptable image transfer from the photoreceptor to the print blanket at a blanket bias voltage of 500V or higher, for example, while minimizing the damaging effects of plasma from the unavoidable corona breakdown which can occur, for example at a threshold breakdown voltage of 450V.
Furthermore, during a null cycle when normal printing is briefly suspended, these damaging effects on the blanket can be exacerbated. A null cycle is a non-productive cycle that occurs within the press due to an interrupt from a printing subsystem. During a null cycle, no potential is needed between the photoreceptor and the blanket. As an image in the current print cycle is transferred from the blanket to the print media during normal printing, instead of beginning a new print cycle, an interrupt can cause a null cycle to be inserted between print cycles. A null cycle can be triggered by various printing subsystems as a way to inform the print controller within the press that a subsystem is not ready to continue with normal printing. For example, during normal printing, a sensor in the print media transport system may detect that the print media has not arrived at a particular location along the media transport path by a designated instant in time. The detection by the media transport system of such a media timing issue can serve as an interrupt to the print controller within the press that triggers a null cycle. For each subsequent print cycle during which the interrupt from the media transport system persists, an additional null cycle will be inserted to continue suspending the normal printing process. In another example, while performing a color calibration, the printing press can insert null cycles into the printing process while it waits for an inline densitometer/spectrophotometer to measure a printed page before it prints a next page.
During a null cycle, the printing press operates as if normal printing is being performed, but there is actually no image development or image transfer taking place. During the null cycle, most of the printing components remain operational so that when the next print cycle begins, these components are ready to resume writing and transferring images as normal. For example, in a null cycle, the photoreceptor drum, ITM drum, and the image impression drum will continue to spin. In addition, the bias voltage being applied to the print blanket during a null cycle also remains at a high bias level in anticipation of an upcoming printing cycle. However, during the null cycle there is no development of an image onto the photoreceptor and no transfer of an image from the photoreceptor to the blanket on the ITM drum. Thus, the “first transfer” of an ink image from the photoreceptor to the print blanket does not occur during a null cycle. Because there is no transfer of an ink image to the print blanket during the null cycle, the blanket will be dryer during the null cycle than it is during a normal printing cycle because the blanket will be devoid of any ink, ink solvents, or other liquid carrier that typically coat the blanket during a printing cycle. Unfortunately, the dry print blanket tends to increase the current flow and the plasma formation between the photoreceptor and the blanket, which in turn causes additional damage to the blanket. As a result, the damaging effect of the high blanket bias voltage noted above, is increased during null cycles.
Accordingly, example systems and methods described herein detect the onset of a null cycle and make an adjustment to the bias voltage being applied to the print blanket during the null cycle. The adjustment of the bias voltage reduces the voltage applied to the blanket in order to help minimize or avoid the negative effects of an increase in current and plasma formation between the photoreceptor and the blanket that may otherwise occur during the null cycle while the blanket is dry. When a null cycle is triggered, the bias voltage is selected to be below the Paschen voltage or threshold corona breakdown voltage, which prevents plasma current between the photoreceptor and print blanket, and thereby avoids damage to the blanket. The bias voltage is also selected to be positive with respect to the photoreceptor. The minimum blanket bias voltage is higher than a V-light value, which refers to the residual voltage remaining on the photoreceptor after being discharged by light. The V-light value increases as the photoreceptor ages, and it typically varies from around 10-20V for a new photoreceptor to an acceptable limit on the order of 180V. Therefore, the bias voltage applied to the blanket when a null cycle is detected is typically the lowest value possible that is below the Paschen voltage but still above V-light.
In one example, a method of controlling voltage applied to a print blanket within a printing device, includes printing a print job. During printing of the print job, a null cycle trigger is received. In response to the null cycle trigger, the bias voltage being applied to a print blanket is reduced from a print bias level to a null bias level. In another example, a non-transitory machine-readable storage medium stores instructions that when executed by a processor of a printing device, cause the printing device to detect an interrupt from a printing subsystem during a print cycle of a printing process. In response to detecting the interrupt, the printing device changes a print blanket bias voltage from a print bias level to a null bias level, and inserts a first null cycle into the printing process following the print cycle. The printing device further inserts an additional null cycle following the first null cycle for each null cycle in which the detection of the interrupt persists, and maintains the print blanket bias voltage at the null bias level during each null cycle. In another example, a printing device includes a print blanket to receive an ink image from a photoreceptor. The printing device further includes a bias unit to set a bias voltage of the print blanket, and a voltage source to provide a print bias voltage and a null cycle bias voltage. The printing device also includes a controller to receive a null cycle trigger, and to adjust a set-point of the bias unit from the print bias voltage to the null cycle voltage in response to the trigger.
An LEP printing press 100 includes a print engine 102 that receives a print substrate, illustrated as print media 104 (e.g., cut-sheet paper or a paper web) from a media input mechanism 106. After the printing process is complete, the print engine 102 outputs the printed media 108 to a media output mechanism, such as a media stacker tray 110. The printing process is generally controlled by a print controller 120 to generate the printed media 108 using digital image data that represents words, pages, text, and images that can be created, for example, using electronic layout and/or desktop publishing programs. Digital image data is generally formatted as one or multiple print jobs that are stored and executed on the print controller 120, as further discussed below with reference to
The print engine 102 includes a photo imaging component, such as a photoreceptor 112 mounted on an imaging drum 114 or imaging cylinder 114. The photoreceptor 112 defines an outer surface of the imaging drum 114 on which images can be formed. A charging component such as charge roller 116 generates electrical charge that flows toward the photoreceptor surface and covers it with a uniform electrostatic charge. The print controller 120 uses digital image print data and other inputs such as print job and print media parameters, temperatures, and so on, to control a laser imaging unit 118 to selectively expose the photoreceptor 112. The laser imaging unit 118 exposes image areas on the photoreceptor 112 by dissipating (neutralizing) the charge in those areas. Exposure of the photoreceptor in this manner creates a ‘latent image’ in the form of an invisible electrostatic charge pattern that replicates the image to be printed.
After the latent/electrostatic image is formed on the photoreceptor 112, the image is developed by a binary ink development (BID) roller 122 to form an ink image on the outer surface of the photoreceptor 112. Each BID roller 122 develops one ink color of the image, and each developed color corresponds with one image impression. While four BID rollers 122 are shown, indicating a four color process (i.e., a CMYK process), other press implementations may include additional BID rollers 122 corresponding to additional colors. In addition, although not illustrated, print engine 102 also includes an erase mechanism and a cleaning mechanism which are generally incorporated as part of any electrophotographic process.
In a first image transfer, the single color separation impression of the ink image developed on the photoreceptor 112 is transferred from the photoreceptor 112 to an image transfer blanket 124. The image transfer blanket 124 is primarily referred to herein as the print blanket 124 or blanket 124. The print blanket 124 overlies and is securely fastened to the outer surface of the intermediate transfer media (ITM) drum 126, sometimes referred to as the image transfer drum 126. The first image transfer that transfers ink from the photoreceptor 112 to the print blanket 124 is driven by electrophoresis of the electrically charged ink particles and an applied mechanical pressure between the imaging drum 114 and the ITM drum 126. The blanket 124 is electrically conductive, enabling it to be electrified by an applied bias voltage, referred to variously herein as the bias voltage, blanket bias voltage, print blanket bias voltage, ITM bias voltage, and other similar variations. The electric field that drives the ink transfer is created by the applied bias voltage. Both the blanket bias voltage and the mechanical pressure between the imaging and ITM drums can have a significant impact on image transfer quality.
The print blanket 124 is heated by both internal and external heating sources such as infrared heating lamps (not shown). Heat from the heated print blanket 124 causes most of the carrier liquid and solvents in the transferred ink image to evaporate. The blanket heat also causes the particles in the ink to partially melt and blend together. This results in a finished ink image on the blanket 124 in the form of a hot, nearly dry, tacky plastic ink film. In a second image transfer, this hot ink film image impression is then transferred to a substrate such as a sheet of print media 104, which is held by an impression drum/cylinder 128. The temperature of the print media substrate 104 is below the melting temperature of the ink particles, and as the ink film comes into contact with the print media substrate 104, the ink film solidifies, sticks to the substrate, and completely peels off from the blanket 124.
This process is repeated for each color separation in the image, and the print media 104 remains on the impression drum 128 until all the color separation impressions (e.g., C, M, Y, and K) in the image are transferred to the print media 104. After all the color impressions have been transferred to the sheet of print media 104, the printed media 108 sheet is transported by various rollers 132 from the impression drum 128 to the output mechanism 110.
As mentioned above, in the first image transfer, the electric field that drives the ink transfer from the photoreceptor 112 to the print blanket 124 is created by a bias voltage applied to the blanket 124. Thus, as shown in
As noted above, print controller 120 uses digital image data and other inputs to control the laser imaging unit 118 in the print engine 102 to selectively expose the photoreceptor 112. More specifically, controller 120 receives digital print data 204 from a host system, such as a computer, and stores the data 204 in memory 202. Data 204 represents, for example, documents or image files to be printed. As such, data 204 forms one or more print jobs 206 for printing press 100 that each include print job commands and/or command parameters. Using a print job 206 from data 204, print controller 120 controls components of print engine 102 (e.g., laser imaging unit 118) to form characters, symbols, and/or other graphics or images on print media 104 through a printing process as has been generally described above with reference to
As previously mentioned, normal printing can be suspended in the press 100 upon the print controller 120 receiving or detecting a null cycle trigger. A null cycle trigger can comprise an interrupt generated by a printing subsystem 144, such as a color calibration subsystem or media transport subsystem. Such subsystem interrupts provide an error indication to the print controller 120 that the subsystem is not ready to continue normal printing. A bias voltage module 208 comprises program instructions stored in memory 202 and executable on processor 200 to cause the print controller 120, and/or printing press 100, to receive or detect a subsystem interrupt and to initiate various actions in response to the interrupt. For example, the controller 120 can use the interrupt as a trigger to insert a null cycle into the printing process, and to change the bias voltage applied to the print blanket 124 to help reduce damage to the print blanket during the null cycle. Changing the bias voltage can include providing a control signal to the bias unit 134 to change a bias set-point 138 from a print bias voltage 140 to a null cycle voltage 142. Instructions in module 208 can further cause the controller 120 to continually insert null cycles into the printing process until the controller 120 detects that the subsystem interrupt has terminated or is no longer present. In some examples, when enough consecutive null cycles are inserted, the controller 120 can eventually cause the press to “time-out” and put the press into a standby mode in which, for example, the drums stop rotating and certain printing subsystems enter an off or “sleep”-like state. As noted above, during a null cycle, the printing press 100 operates as if normal printing is being performed, but there is actually no image development or image transfer taking place. Therefore, most of the printing components remain operational (e.g., drums 114, 126, 128, remain spinning) so that when the next print cycle begins, these components are ready to resume writing and transferring images as normal. The controller 120 can maintain the blanket bias voltage at the null cycle voltage 142 during all the null cycles. When the controller 120 detects that the subsystem interrupt is no longer present, the controller 120 can change the bias voltage applied to the print blanket 124 back the print bias voltage level 140 and resume normal printing in the press 100 by inserting print cycles into the printing process.
Methods 300 and 400 may include more than one implementation, and different implementations of methods 300 and 400 may not employ every operation presented in the respective flow diagrams. Therefore, while the operations of methods 300 and 400 are presented in a particular order within the flow diagrams, the order of their presentation is not intended to be a limitation as to the order in which the operations may actually be implemented, or as to whether all of the operations may be implemented. For example, one implementation of method 300 might be achieved through the performance of a number of initial operations, without performing one or more subsequent operations, while another implementation of method 300 might be achieved through the performance of all of the operations.
Referring now to the flow diagram of
Referring now to the flow diagram of
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/063878 | 6/30/2014 | WO | 00 |