The entire disclosure of Japanese Patent Application No. 2012-097841, filed Apr. 23, 2012 is expressly incorporated by reference herein.
1. Technical Field
The present invention relates to a print control device and a program.
2. Related Art
A printing apparatus which performs recording by discharging a liquid from nozzles to cause droplets (dots) to land on a medium is known. When printing is performed using such a printing apparatus, there are cases in which density irregularity (for example, white stripes and black stripes) occurs in a printed image, and the quality of the printed image thereby deteriorates.
When such density irregularity occurs, density correction values are acquired for each dot array (raster line), print density for each dot array is corrected based on the acquired density correction values, and the problem of image deterioration caused by the density irregularity can thereby be resolved (BRS correction). In addition, as a method for acquiring such density correction values, there is a method in which a test pattern formed on a medium (a test sheet, or the like) is read using a scanner so as to acquire image data of the test pattern, and density correction values for each dot array are acquired based on the density of pixel arrays corresponding to each of the dot arrays in the acquired image data of the test pattern (for example, JP-A-2005-205691).
In an ink jet printer as a printing apparatus, for example, in order to increase a region in which printing can be performed at one time, a plurality of nozzle arrays are disposed in an arrangement of a nozzle array direction so that the end portions of the nozzle arrays overlap each other. In such an ink jet printer, there are cases in which ink discharge positions of adjacent nozzles are shifted in the overlapping portions of the nozzle arrays due to an alignment error during mounting of nozzles or a difference of ink discharge characteristics of respective nozzles. In such cases, since dot arrays are formed with a shift, the quality of a printed image easily deteriorates. Thus, there is a method for printing while suppressing shifting of formation positions of dot arrays by appropriately moving (shifting) print data allocated to adjacent two nozzles in the nozzle array direction with respect to the position of a predetermined dot array.
However, in the overlapping portions of the nozzle arrays, if the position of a nozzle corresponding to a certain dot array (rater line) is shifted, a density correction value acquired for the position of the dot array is also shifted in the same manner. For this reason, a density correction value suitable for adjacent two nozzles is not applied, and thereby density irregularity is difficult to be sufficiently suppressed.
An advantage of some aspects of the invention is to perform printing of an image in which a shift of positions of dot arrays is not conspicuous while suppressing density irregularity using a printing apparatus in which portions of a plurality of nozzle arrays are disposed in an overlapping manner.
According to the present invention, there is provided a print control device that controls a printing apparatus including a first nozzle array in which a plurality of nozzles that discharge an ink are lined in a predetermined direction, and a second nozzle array in which a plurality of nozzles that discharge the ink are lined in the predetermined direction and some of the nozzles are disposed in positions overlapping those of some nozzles of the first nozzle array in the predetermined direction, and in the print control device, a plurality of test patterns disposed in the predetermined direction are printed by dot arrays formed along an intersecting direction intersecting with the predetermined direction by using nozzles included in an overlapping portion of the first nozzle array and the second nozzle array, a plurality of rules disposed in the predetermined direction are printed so as to be adjacent to the test patterns by using nozzles included in the first nozzle array and the second nozzle array, density correction values of each of raster lines are computed according to density of each of the raster lines lined in the predetermined direction detected from image data of which the test patterns are read, and the positions of respective nozzles included in the first nozzle array specified from the positions of the rules are associated with the positions of the respective raster lines for which the density correction values are computed and the positions of respective nozzles included in the second nozzle array specified from the positions of the rules are associated with the positions of the respective raster lines for which the density correction values are computed.
Other characteristics of the present invention will be clarified with description of the present specification and accompanying drawings.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Based on description of the present specification and the accompanying drawings, at least the following matters are clarified.
There is provided a print control device that controls a printing apparatus including a first nozzle array in which a plurality of nozzles that discharge an ink are lined in a predetermined direction, and a second nozzle array in which a plurality of nozzles that discharge the ink are lined in the predetermined direction and some of the nozzles are disposed in positions overlapping those of some nozzles of the first nozzle array in the predetermined direction, and in the print control device, a plurality of test patterns disposed in the predetermined direction are printed by dot arrays formed along an intersecting direction intersecting with the predetermined direction by using nozzles included in an overlapping portion of the first nozzle array and the second nozzle array, a plurality of rules disposed in the predetermined direction are printed so as to be adjacent to the test patterns by using nozzles included in the first nozzle array and the second nozzle array, density correction values of each of raster lines are computed according to density of each of the raster lines lined in the predetermined direction detected from image data of which the test patterns are read, and the positions of respective nozzles included in the first nozzle array specified from the positions of the rules are associated with the positions of the respective raster lines for which the density correction values are computed and the positions of respective nozzles included in the second nozzle array specified from the positions of the rules are associated with the positions of the respective raster lines for which the density correction values are computed.
According to the print control device, using the printing apparatus in which some the plurality of nozzle arrays are disposed in an overlapping manner, an image in which a position shift of dot arrays is not conspicuous can be printed while suppressing density irregularity.
In the print control device, it is desirable that the test patterns are printed by adjusting pixel arrays of the image data actually allocated to the respective nozzles so that a shift amount in the predetermined direction between a pixel array on the image data allocated to a nozzle when each nozzle included in the first nozzle array and the second nozzle array is disposed in an ideal position and a pixel array on the image data actually allocated to a nozzle included in the first nozzle array and the second nozzle array is a half or smaller than the distance between two nozzles adjacent to each other in the first nozzle array or the second nozzle array.
According to the print control device, when printing is performed using inks of a plurality of colors, ink discharge from each nozzle can be adjusted so that a color shift or color mixing is difficult to occur. Then, in that state, an appropriate density correction value is easily applied to each nozzle.
In the print control device, it is desirable that, in the overlapping portion of the first nozzle array and the second nozzle array, the positions of the raster lines and the positions of the nozzles are associated with reference to a position in the middle of the position of a rule printed by the first nozzle array and the position of a rule printed by the second nozzle array.
According to the print control device, the relationship between the positions of the rules and the positions of the nozzles of each head that printed the rule is accurately detected with ease. Thus, the relationship between the positions of the raster lines and the positions of the nozzles can be accurately detected based on the rules.
In the print control device, it is desirable that, in the overlapping portion of the first nozzle array and the second nozzle array, the positions of respective nozzles included in the first nozzle array are associated with the positions of the raster lines with reference to the position of a rule printed by the first nozzle array, and the positions of respective nozzles included in the second nozzle array are associated with the positions of the raster lines with reference to the positions of a rule printed by the second nozzle array.
According to the print control device, the relationship between the positions of the rules and the positions of the nozzles of each head that printed the rule is accurately detected with ease. Thus, the relationship between the positions of the raster lines and the positions of the nozzles can be accurately detected based on the rules. In addition, by printing rules individually by each head, the corresponding relationship between the positions of the rules and the positions of the respective nozzles in the overlapping region of the heads is easily clarified.
In the print control device, it is desirable that, in the overlapping portion of the first nozzle array and the second nozzle array, the rules are printed by nozzles included in either nozzle array of the first nozzle array or the second nozzle array.
According to the print control device, the relationship between the positions of the rules and the positions of the nozzles of each head that printed the rule is accurately detected with ease. Thus, the relationship between the positions of the raster lines and the positions of the nozzles can be accurately detected based on the rules. In addition, by printing the rules in the overlapping region of the heads only using the head on one side, the number of rules printed in the overlapping region reduces, and the association of the rules and the nozzles become easy.
In addition, there is provided a program that causes a print control device that controls a printing apparatus including a first nozzle array in which a plurality of nozzles that discharge an ink is lined in a predetermined direction, and a second nozzle array in which a plurality of nozzles that discharge the ink is lined in the predetermined direction and some of the nozzles are disposed in positions overlapping those of some nozzles of the first nozzle array in the predetermined direction to execute a density correction process with functions of printing a plurality of test patterns disposed in the predetermined direction by using dot arrays formed along an intersecting direction intersecting with the predetermined direction using nozzles included in an overlapping portion of the first nozzle array and the second nozzle array, printing a plurality of rules disposed in the predetermined direction are printed so as to be adjacent to the test patterns by using nozzles included in the first nozzle array and the second nozzle array, computing density correction values of each of raster lines according to density of each of the raster lines lined in the predetermined direction detected from image data of which the test patterns are read, and associating the positions of respective nozzles included in the first nozzle array specified from the positions of the rules with the positions of the respective raster lines for which the density correction values are computed, and associating the positions of respective nozzles included in the second nozzle array specified from the positions of the rules with the positions of the respective raster lines for which the density correction values are computed.
First, the meanings of terms used in describing the present embodiment will be explained.
“Image data” is data indicating two-dimensional images. In embodiments to be described later, there are image data of 256 grayscales, image data of 4 grayscales, and the like. When a printer controls formation of dots using 4 grayscales (large dots, medium dots, small dots, and no dots), image data of 4 grayscales indicates a formation state of dots constituting a printed image.
A “printed image” is an image printed on a medium (for example, paper). A printed image of an ink jet printer is constituted by innumerable dots formed on paper.
A “pixel” is a minimum unit constituting an image. An image is constituted by such pixels two-dimensionally arranged. They mostly mean pixels on image data.
A “pixel array” is an array of pixels lined on image data in a predetermined direction. As shown in the drawing, a pixel array being in an nth position is called an “nth pixel array.”
A “raster line” is an array of dots lined in a direction in which and paper moves with respect to heads (movement direction). In a case of a line printer as in embodiments described later, a “raster line” means an array of dots lined in the transport direction of paper. On the other hand, in a case of a serial printer that performs printing using heads mounted on a carriage, a “raster line” means an array of dots lined in a movement direction of the carriage. A printed image is formed by a number of raster lines lined in a direction perpendicular to the movement direction. As shown in the drawing, a raster line being in an nth position is called an “nth raster line.”
“Image data” is data indicating grayscales of pixels. Image data is constituted by a number of pixel data pieces. There are cases in which “pixel data” is referred to as a “grayscale value of a pixel.” In case of image data of 4 grayscales, each pixel data piece is 2-bit data, and indicates a dot formation state (large dots, medium dots, small dots, and no dots) of a pixel.
A “pixel region” is a region on paper corresponding to pixels on image data. For example, when resolution of image data is 180×180 dpi, a “pixel region” is a region of a square shape having one side of 1/180 inches.
An “array region” is a region on paper corresponding to a pixel array. For example, when resolution of image data is 180×180 dpi, an array region is a slit-like region having the width of 1/180 inches. The right lower part of the drawing shows array regions. An “array region” is also a position in which formation of a raster line is aimed. As shown in the drawing, an array region in an nth position is called an “nth array region.” The nth array region is a position in which formation of an nth raster line is aimed.
The right lower part of
In the present embodiment, an image is printed using an ink jet printer (printer 1) as a printing apparatus.
A computer 110 is connected to the printer 1 and a scanner that is an image reading device if necessary. In the computer 110, a printer driver is installed. The printer driver performs a process causes print data to be generated in the computer 110, transmits this print data to the printer 1 so as to cause the printer 1 to print an image. In other words, in the present embodiment, the computer 110 in which the printer driver is installed is a print control device.
In addition, a scanner driver is installed in the computer 110. The scanner driver can cause the scanner 120 to read a document set in the scanner 120, and thereby acquiring image data from the scanner 120.
The printer 1 has a transport unit 20, a head unit 40, a detector group 50, and a controller 60. The printer 1, which receives print data from the computer 110 that is an external device, controls each unit (the transport unit 20 and the head unit 40) using the controller 60. The controller 60 controls each of the units so as to print an image on a medium such as paper based on the print data received from the computer 110. States inside the printer 1 is monitored by the detector group 50, and the detector group 50 outputs a detection result to the controller 60. The controller 60 controls each of the units based on the detection result output from the detector group 50.
The transport unit 20 transports the medium (for example, paper S, or the like) in a predetermined direction (hereinafter, referred to as a transport direction). This transport unit 20 has an upstream-side roller 22A, a downstream-side roller 22B, and a belt 24. When a transport motor not shown in the drawing rotates, the upstream-side roller 22A and the downstream-side roller 22B rotate, and the belt 24 thereby rotates. The fed medium (for example, the paper S) is transported to a printable region (a region facing the head unit 40) by the belt 24, and then an image is printed when the medium passes the region. The paper S that has passed the printable region is discharged to outside by the belt 24. Note that the paper S being transported is electrostatic-attracted or vacuum-attracted by the belt 24.
The head unit 40 is for discharging inks on the paper S, and forms droplets (dots) of inks on the paper S by discharging inks from nozzles on the paper S being transported so as to print an image. The head unit 40 has 4 heads including heads 41 to 44 along the transport direction. A magenta nozzle array (M) that discharges a magenta ink is provided in the head 41. A cyan nozzle array (C) that discharges a cyan ink is provided in the head 42. A yellow nozzle array (Y) that discharges a yellow ink is provided in the head 43. A black nozzle array (B) that discharges a black ink is provided in the head 44. The printer 1 of the present embodiment is a color printer, and the head unit 40 can form dots in the width of the medium (paper S) in one time.
A specific configuration of the head unit 40 will be described later.
A rotary encoder (not shown) that detects a rotation amount of the upstream-side roller 22A (or the downstream-side roller 22B), and the like are included in the detector group 50. Based on a detection result of the rotary encoder, a transport amount of the paper S can be detected.
The controller 60 is a control unit (control part) for controlling the printer 1. The controller 60 has an interface unit 61, a CPU 62, a memory 63, and a unit control circuit 64. The CPU 62 is an arithmetic processing device for controlling the entire printer. The memory 63 is for securing an area in which programs are stored or a work area of the CPU 62, or the like, and has a storage element such as a RAM, EEPROM, or the like. The CPU 62 controls each unit via the unit control circuit 64 according to programs stored in the memory 63.
The configurations of the heads 42 to 44 are substantially the same as that of the head 41 (see
The short heads 41A to 41C of the head 41 respectively have a magenta (M) nozzle array that discharges the magenta ink, the short heads 42A to 42C of the head 42 respectively have a cyan (C) nozzle array that discharges the cyan ink. Each nozzle array has 360 nozzles discharging inks. The 360 nozzles of each nozzle array are lined with a predetermined nozzle pitch (for example, 1/360 inches) along the paper-width direction. In description below, the 360 nozzles of each nozzle array will be called a nozzle #1, a nozzle #2, . . . , a nozzle #360 in order from above in the drawing. Note that the number of nozzles provided in each nozzle array is not limited to 360.
In each of the nozzles, piezoelectric elements (driving elements) such as piezo element (not shown) are provided. When a voltage waveform signal having a size according to pixel data (4 grayscales) is applied to the piezoelectric elements, the piezoelectric elements are extended or contracted for driving according to the size of a voltage, and a predetermined amount of inks is thereby discharged from the nozzle unit.
The nozzles #359 and #360 of the head 41A are disposed so as to line with the nozzles #1 and #2 of the head 41B respectively in the transport direction. In the same manner, the nozzles #359 and #360 of the head 41B are disposed so as to line with the nozzles #1 and #2 of the head 41C in the transport direction. In other words, two nozzles of two short heads (for example, the head 41A and the head 41B) adjacent in the paper-width direction are disposed in positions overlapping in the paper-width direction. By disposing the nozzles in an overlapping manner as above, joints of heads on a printed image can be set not to be conspicuous.
In addition, the head 41 and the head 42 are disposed in corresponding positions in the transport direction. For example, the magenta (M) nozzle #1 of the head 41A and the cyan (C) nozzle #1 of the head 42A are in positions overlapping in the paper-width direction, and disposed in positions shifted with respect to the transport direction. In addition, the magenta (M) nozzle #1 of the head 41B and the cyan (C) nozzle #1 of the head 42B are in positions overlapping in the paper-width direction, and disposed in positions shifted with respect to the transport direction.
Formation of a dot array using the printer 1 will be described. Herein, description will be provided on the assumption that each head is mounted in a position as designed, and dots are formed in an ideal state. Note that formation of dots by the magenta (M) nozzle arrays of the head 41 will be described, but the same is applied also to formation of dots by nozzle arrays of other colors.
As shown in
On the other hand, in a 359th pixel array, two nozzles of the nozzle #359 of the head 41A and the nozzle #1 of the head 41B are associated with each other. Herein, odd-numbered pixel data pieces (black circles in the drawing) of the 359th pixel array are associated with the nozzle #359 of the head 41A, and even-numbered pixel data pieces (black squares in the drawing) are associated with the nozzle #1 of the head 41B. Then, inks are discharged from each nozzle according to the pixel data. When dots are formed in an ideal state, dots are formed at intervals of one dot by the nozzle #359 of the head 41A, and in order to interpolate the space between dots, dots are formed at intervals of one dot by the nozzle #1 of the head 41B. Accordingly, a 359th raster line is formed by the two nozzles in the 359th array region. Note that formation of dots in a 360th array region is the same.
Hereinafter, nozzles in an overlapping region of dot arrays (for example, the nozzle #359 of the head 41A and the nozzle #1 of the head 41B) are called “overlapping nozzles.” In
Formation of Dots in a State with Head Mounting Error
A case in which dots are formed in an ideal state will be described, but since an error is made in mounting a head in a rotation direction or a translation direction (a direction parallel with the paper-width direction) in reality, there is a case in which dot arrays are not formed in an ideal state. In addition, there are cases in which dots arrays are not formed in an ideal state due to transporting of paper in an inclined or serpentine manner, or discharging of inks from nozzles in a curved manner. Herein, a case in which there is a mounting error is described.
When a blue rule is printed along the transport direction in a array region, printing is performed by discharging magenta (M) and cyan (C) inks from nozzles in the same position in the paper-width direction. When, for example, in
Next, when a blue rule is printed in a 715th array region in the same manner, inks are discharged respectively from a nozzle #357 of the head 41B and a nozzle #357 of the head 42B. However, as shown in
Note that a “shift amount of one nozzle” refers to a shift amount as far as the gap between two adjacent nozzles (for example, the nozzle #1 and the nozzle #2 of the head 41A) in each nozzle array in the paper-width direction.
Next, when a blue rule is printed in a 1073rd array region in the same manner, an ink is discharged respectively from the nozzle #357 of the head 41C and the nozzle #357 of the head 42C. However, when a mounting error of +0.5 nozzle is made in the head 41C in the paper-width direction and a mounting error of −0.5 nozzle is made in the head 42C in the paper-width direction, a shift amount of the head 41C and the head 42C in the paper-width direction further increases due to an accumulated shift amount of the head 41B and the head 42B. In
In this manner, when positions of color ink nozzles in the paper-width direction are shifted due to the positions being affected by an error of mounting positions of heads in the paper-width direction, a position in which dots are formed (array region) is shifted, and problems such as color shift and color mixing are generated according to the magnitude of the shift amount.
A correction process for suppressing color shift and color mixing (hereinafter, referred also to a process of “array reference”) will be described focusing on shift of landing positions of color ink dots in each array region as described above.
In the array reference process, a reference head (the head 41 in
In
The head 42 is considered in the same manner. When the cyan (C) nozzle array of the head 42B has a shift amount that is equal to or smaller than −0.5 nozzle with respect to the ideal alignment in the paper-width direction, the shift amount is equal to or smaller than 0.5 nozzle, and thus, the pixel array allocated to each nozzle of the head 42B is not shifted, and the shift amount becomes 0. In addition, the cyan (C) nozzle array of the head 42C has a shift amount of −0.5 nozzle with respect to the head 42B in the paper-width direction. Since the shift amounts accumulate, the cyan (C) nozzle array of the head 42C has a shift amount in the range from −0.5 nozzle to −1.5 nozzle with respect to the ideal alignment in the paper-width direction. Thus, the pixel array allocated to the head 42C is shifted by one array on the minus side, and the shift amount becomes −1. As a result, the pixel array of which the nozzle #1 of the head 42C is in charge is changed from the 717th pixel array to a 716th pixel array.
By shifting the pixel array allocated to each nozzle using the array reference, a color error between arbitrary two colors can be one raster to the maximum, and a shift amount between nozzles to which the same array region is allocated in a joint of heads can be suppressed to be smaller than one raster.
For example, a shift amount of about two nozzles is generated as Gap 2 for the 1073rd array region in
By changing (adjusting) setting of a pixel array allocated to each nozzle in this manner, a shift of landing positions of color ink dots in the paper-width direction can be reduced, and occurrence of color shift and color mixing can be suppressed. Note that an algorithm for pixel array allocation for solving the color shift and color mixing is not limited only to the method, and may be implemented in other methods. In addition, in the above-described example, setting of an ideal alignment with respect to the position of the head 41A has been described, but the setting may be made with respect to the position of another head (nozzle array).
While color shift, or the like can be effectively solved when a pixel array allocated to each nozzle with the array reference as described above is shifted, a problem occurs when density correction (BRS) for each array region is performed. Note that, since details of density correction (BRS) are described in JP-A-2005-205691, the description is omitted herein.
In density correction (BRS) of the related art, density correction values (BRS correction values) are computed for each of array regions, the computed BRS correction values are applied respectively to nozzles that are in charge of the array regions so as to adjust amounts of inks discharged from the nozzles, and density of each raster line is corrected. In this case, a shift of a pixel array as described above is not considered in the array regions to which the BRS correction values are applied. When there is no shift in a nozzle position, for example, in
With regard to this matter, even when nozzles are shifted based on the array reference as in
For example, it is assumed that the BRS correction value for cyan (C) of a 718th array region is a correction value that increases density by 10% (expressed as +10%), and the BRS correction value for cyan (C) of 717th and 719th array regions is a correction value that does not change density (expressed as ±0%). In this case, the correction value allocated for the nozzle #360 of the head 42B and the nozzle #2 of the head 42C is +10%. In addition, the correction value of ±0% is allocated to the nozzle #3 of the head 42C that is an overlapping nozzle corresponding to the nozzle #360 of the head 42B, and the correction value of ±0% is allocated to the nozzle #359 of the head 42B that is an overlapping nozzle corresponding to the nozzle #2 of the head 42C. In this case, in the 717th array region after the array reference shift (the nozzle #359 of the head 42B and the nozzle #2 of the head 42C in
In this manner, density correction is not appropriately performed in an overlapping nozzle, and quality of a printed image thereby deteriorates.
Therefore, in the present embodiment, an appropriate density correction value is applied to each nozzle while shifting print data so as not to cause color shift, or the like in an overlapping portion of nozzle arrays (overlapping region). For example, in the case of
First, the number (x) of an array region in image data of an image to be printed is associated with the number (#1) of a nozzle provided in each head. Then, a BRS correction pattern is printed, a correction value for each raster line is computed from the correction pattern, and the number (k) of a raster line for which the correction value is computed is associated with the nozzle number (#i) of each head. Then, image data of which density is corrected for each array region (x) is generated using the number (k) of a raster line associated with a shared nozzle number (#i) and the correction value. By performing printing using the image data after the correction, an image having satisfactory quality in which position shift of dot arrays is not conspicuous can be printed while suppressing density irregularity.
First, data of an image (image data) to be printed is copied and extended to generate extended image data.
Based on the extended image data generated in S101, an xth array region of the extended image data is associated with a nozzle #i.
An ink is discharged from the nozzle #i of the head 42A to the xth array region in extended image data (A) of the drawing. Thus, the nozzle #i of the head 42A is associated with the xth array region. In the same manner, the nozzle #i−1 of the head 42A is associated with the x−1th array region, and the nozzle #i+1 of the head 42A is associated with the x+1th array region. The nozzles of the head 42A and the array regions of the extended image data (A) are associated with each other.
In addition, each of array regions of extended image data (B) is associated with each of nozzles of the head 42B in the same manner.
Next, density correction values are obtained for each raster line of the printed image, and a density correction value obtained for a kth raster line is associated with the nozzle #i of each head.
First, printing of test patterns and rules is performed (S131).
The test patterns are printed by the head 42A and the head 42B, and includes, for example, three regions having density of 30%, 50%, and 70%. The test patterns are formed in such way that a plurality of dot arrays along the transport direction are lined in the paper-width direction, and when density irregularity occurs in a certain array region, a shift is caused in a raster line corresponding to the array region along the transport direction of the test patterns. Thus, by obtaining a correction value for correcting density of the raster line in which a shift is caused (in other words, a position in the paper-width direction in which a shift is caused), occurrence of density irregularity in a printed image can be suppressed. In the present embodiment, the strip-shaped pattern is printed based on the “array reference” described above, causing color shift, or the like to be difficult to occur.
In addition, the plurality of rules to be printed adjacent to the strip-shaped pattern are printed so as to be lined in the paper-width direction using predetermined nozzles of the head 42A and the head 42B. For example, the nozzles such as the nozzle #1, the nozzle #10, the nozzle #20, . . . of the head 42A are selected for printing so that intervals of the rules are substantially equal. After all, the number of nozzles used in printing the rules are obvious in the present embodiment.
Herein, when the rules are printed, print data is adjusted so that the distance in the paper-width direction (nozzle array direction) between the nozzle #i of the head 42A and the nozzle of the head 42B in the position in the transport direction corresponding to the nozzle #i is 0.5 nozzle or shorter. In other words, a shift amount in the nozzle array direction of nozzles of the head 42A and the head 42B in the overlapping range (overlapping nozzles) is 0.5 raster or smaller. When a shift occurs in the overlapping nozzles as described above, the rule printed by the nozzle #i of the head 42A and the rule printed by the nozzle of the head 42B corresponding to the nozzle #i are printed in shifted positions.
The printed test patterns and rules are read using an image reading device such as a scanner, and acquires as image data (S132). As a scanner, a general image scanner can be used. Then, grayscale values (density) for each raster line are measured based on the acquired image data (S133), and density correction values (BRS correction values) for each raster line are computed based on the grayscale values (density) (S134). Note that, since density correction value (BRS correction value) computing means of S132 to S134 is known, detailed description thereof will be omitted.
Next, the correction values computed for each raster line are associated with respective nozzles of each head (S135). As shown in
The printer driver computes the distance d1 between the kth raster line and the rule r1 in the paper-width direction (nozzle array direction) and the distance d2 between the kth raster line and the rule r2 in the paper-width direction (nozzle array direction) using the image data acquired in S132. When the number of nozzles between the rule r1 and the rule r2 is set to N, the nozzle number corresponding to the kth raster line is expressed by the nozzle number in the position of the rule r1+N×d1/(d1+d2). When the kth raster line is located in the middle of the rule r1 and the rule r2 in
When the rule position is confirmed, the upper and lower rules (the rules r1 and r2 in
S104: Application of Density Correction Value of kth Rater Line to Xth Array Region of Image Data
The printer driver associates the raster number (k) of the density correction value corresponding to the nozzle #i and the array region number (x) of the image data referring to the table of
After the density correction of the image data is completed, the image data after the correction is transmitted to the printer 1 by the printer driver, and an image is thereby printed.
In the present embodiment, when the raster numbers of the density correction values and the nozzle numbers are associated, the test patterns printed based on the array reference using nozzles including overlapping portions of two nozzle arrays and rules printed adjacent to the test patterns are used. The density correction values of each of the raster lines are computed from the density of each of the raster lines of the test patterns. Then, the positions of the nozzles included in each head are respectively specified from the positions of the rules, and associated with the positions of the raster lines for which the density correction values are computed. Accordingly, with reference to the positions of the rules, the density correction values of each of the raster lines can be accurately associated with the positions of the nozzles of each head, and thus, density irregularity occurring when inks are discharged from the nozzles can be effectively suppressed. In addition, since density correction is performed based on the test patterns printed with the array reference, an image having satisfactory quality in which a position shift or color mixing is not conspicuous can be printed.
A modification example (Modification Example 1) of test patterns and rules printed in the process of associating density correction values for each array region and each nozzle (S103) will be described.
With printing of rules separately by respective heads, the corresponding relationship between the positions of the rules and the positions of respective nozzles in the head overlapping region is easily clarified.
Another modification example (Modification Example 2) of test patterns and rules printed in the process of associating density correction values for each array region and each nozzle (S103) will be described.
In the portion other than the overlapping region, density correction values and raster numbers (k) thereof, and nozzle numbers (#1) of each head are associated as described in the process of S135 above. In addition, in the overlapping region, raster numbers (k) for each nozzle of the head 42B and nozzle numbers (#i) of the head 42B are associated. Then, the nozzle positions (positions in the paper-width direction) of respective nozzles of the head 42A in the overlapping region are specified referring to the distances of the rules (for example, 10-nozzle distances) formed in the region above the overlapping region, and then the raster numbers (k) and the nozzle numbers (#i) are associated.
With printing of rules in the overlapping region of the heads only using a head on one side, the number of rules printed in the overlapping region reduces, and association of rules with nozzles become easy.
A printer and a controlling device thereof have been described as an embodiment, but the above-described embodiments are merely for facilitating understanding of the invention, and do not limitedly interpret the present invention. The present invention can be modified and improved without departing from the gist thereof, and it is needless to say that equivalents to the present invention are included therein. Particularly, any embodiment described hereinafter belongs to the invention.
As an example of a printer controlled by the print control device in the embodiments described above, a so-called line printer, which prints images by discharging inks from a fixed head unit onto a medium transported in the transport direction, has been described, but the printer is not limited thereto. For example, a serial-type printing apparatus that prints by alternately repeating medium transport operations and ink discharge operations while moving a head or a printing apparatus that discharges inks while transporting a medium by rotating a transport drum may be possible.
In the above-described embodiments, the example in which inks of four colors of MCYK are used for printing has been described, but the invention is not limited thereto. For example, inks of colors other than MCYK such as light cyan, light magenta, white, a clear color may be used for printing.
In the above-described embodiments, the example in which inks are discharged from nozzles driven by a piezoelectric element (piezo element) has been described. However, the method for discharging inks is not limited thereto. For example, other method such as a method of generating foam in nozzles using heat may be used.
The nozzle arrays in the head unit are lined in order of MCYK along the transport direction, but the invention is not limited thereto. For example, the orders of the K nozzle array and the Y nozzle array may be changed, or a configuration in which the number of a disposed specific nozzle array is different from that of other nozzle arrays such that the two K nozzle arrays are disposed may be adopted.
In the above-described embodiments, the medium to which a fluid is discharged from nozzles is paper. However, the medium is not limited to paper. For example, a fabric, an OHP sheet, a liquid crystal substrate, a semiconductor wafer, or the like may be used.
In the above-described embodiments, the processes of the printer driver are performed by the computer 110, but may be performed by the printer itself by installing the printer driver in the controller 60 of the printer 1. In this case, the printer 1 is configured to include the print control device.
Number | Date | Country | Kind |
---|---|---|---|
2012-097841 | Apr 2012 | JP | national |