This application claims priority to Japanese Patent Application No. 2015-192379 filed on Sep. 30, 2015, the disclosure of which is herein incorporated by reference in its entirety.
The present disclosure relates to a print device and a non-transitory computer-readable medium.
An inkjet type print device is provided with a head ejecting ink from a nozzle surface, and performs printing on a print medium, which is a print target, during relative movement between the head and the print medium. Among this type of print device, there is a print device that can use a cloth as the print medium.
If one of “ink adhesion to the nozzle surface,” “viscosity increase or solidification of the ink adhered to the nozzle surface,” and “viscosity increase or solidification of the ink inside the nozzles” occurs, an ink ejection failure occurs and print quality deteriorates. Therefore, the print device performs wiping. The wiping is processing that wipes the nozzle surface using a wiper, which is a wiping member made of rubber or the like. The print device performs flushing. The flushing is processing that ejects the ink inside the nozzles when printing is not performed.
In the print device, in order to secure good print quality, it is necessary to perform recovery processing, such as wiping, at an appropriate timing. The present disclosure addresses the problems described above.
Various exemplary embodiments of the general principles described herein provide a print device including a head, a recovery portion, a processor, and a memory. The head is configured to eject, onto a print medium, a first ink for base printing and a second ink for image printing to be printed on the base printing. The recovery portion is configured to perform recovery processing. The recovery processing recovers an ejection performance of the first ink of the head. The memory stores computer-readable instructions. The instructions, when executed by the processor, perform processes including acquiring an integrated value of an ejection amount of the first ink, and determining, based on the acquired integrated value, whether to perform the recovery processing by the recovery portion.
Exemplary embodiments herein provide a non-transitory computer-readable medium storing computer-readable instructions. When executed by a processor provided in a print device, the instructions perform processes including acquiring an integrated value of an ejection amount of the first ink, and determining, based on the acquired integrated value, whether to perform the recovery processing by the recovery portion.
Embodiments will be described below in detail with reference to the accompanying drawings in which:
Mechanical Structure
In the following explanation, up and down directions, left and right directions, and front and rear directions are indicated by arrows in the drawings. In the drawings, the left-right direction is referred to as a main scanning direction. In the drawings, the front-rear direction is referred to as a sub-scanning direction.
The printer 1 that corresponds to a print device of the present disclosure can perform multi-color printing on the print medium using five types of liquid ink whose colors are different from each other. The five types of ink are white ink, black ink, yellow ink, cyan ink and magenta ink. Color inks are a collective term for the four types of ink other than the white ink. The white ink contains a white pigment, such as titanium oxide. The white pigment is a component having a higher settleability than components contained in the color inks. The white ink is mainly used for base printing. The color inks are used for image printing that is printed on the base printing.
As shown in
The head 2 is provided with a first head portion 21 and a second head portion 22. The first head portion 21 is located to the rear of the second head portion 22. In other words, the first head portion 21 and the second head portion 22 are aligned in the sub-scanning direction. As shown in
As shown in
The lower frame body 5 is box shaped, and a platen 51, a platen movement mechanism 52 and a tray 53 are mounted on the inside of the lower frame body 5. The platen 51 is a plate-shaped member that extends in the main scanning direction and the sub-scanning direction, and supports the print medium. The platen movement mechanism 52 supports the platen 51 such that the platen 51 can reciprocate in the sub-scanning direction. The tray 53 is a plate-shaped member that extends in the main scanning direction and the sub-scanning direction, and is positioned between the platen 51 and the platen movement mechanism 52. The tray 53 is larger than the platen 51 in the main scanning direction and the sub-scanning direction. Thus, for example, when the print medium is clothing that has sleeves, the tray 53 supports the sleeves on an upper surface thereof such that the sleeves do not come into contact with a component inside the lower frame body 5.
As a result of the movement of the carriage 3 in the main scanning direction, the head 2 relatively moves in the main scanning direction with respect to the print medium supported by the platen 51. As a result of the movement of the platen 51 in the sub-scanning direction, the head 2 relatively moves in the sub-scanning direction with respect to the print medium supported by the platen 51. Since the first head portion 21 and the second head portion 22 are mounted on the carriage 3, the first head portion 21 and the second head portion 22 integrally and relatively move with respect to the print medium supported by the platen 51. While the head 2 repeats the relative movement with respect to the print medium in the main scanning direction and the sub-scanning direction, the head 2 ejects at least the white ink or one of the color inks during the relative movement in the main scanning direction with respect to the print medium, thus a print operation is performed. The first head portion 21 ejects the white ink onto the print medium supported by the platen 51, and forms the base printing. The second head portion 22 ejects the color inks onto the print medium after the base printing has been formed, and forms color image printing.
The recovery portion 6 performs recovery processing that recovers an ink ejection performance of the head 2. The recovery portion 6 is provided with a first recovery portion 61 and a second recovery portion 62. The first recovery portion 61 faces the first head portion 21 when the first head portion 21 is in the non-print area 11, and thus recovers the ejection performance of the white ink. The second recovery portion 62 faces the second head portion 22 when the second head portion 22 is in the non-print area 11, and thus recovers the ejection performance of the color inks.
As shown in
The first recovery portion 61 will be explained with reference to
The second recovery portion 62 will be explained with reference to
As explained above, the recovery portion 6 can perform the wiping of the first nozzle surface 23 and the second nozzle surface 25 by the wipers 65, the purge operations of the first nozzle holes 24 and the second nozzle holes 26 using the purge portions 63, and the flushing of the first nozzle holes 24 and the second nozzle holes 26 in the flushing portions 64. The wiping of the first nozzle surface 23 by the wiper 65 is hereinafter referred to as wiping of the first nozzle surface 23.
Electrical Configuration
As shown in
The printer 1 is provided with a display portion 81 that performs various types of display, and an operation portion 82 that receives an operation input by a user. The display portion 81 is connected to the bus 74 via a display control portion 83. The display control portion 83 controls the display of the display portion 81 based on a command signal from the CPU 70. The operation portion 82 is connected to the bus 74 via an input processing portion 84. The input processing portion 84 outputs, to the CPU 70, an input signal in response to the operation input on the operation portion 82.
A head drive portion 85, a main scanning drive portion 86, a sub-scanning drive portion 87, a wiper drive portion 88, a cleaner drive portion 89, a purge drive portion 91, a temperature sensor 92, a humidity sensor 93, an encoder 94 and an interface 95 are connected to the bus 74. The head drive portion 85 is connected to the first head portion 21 and the second head portion 22 (refer to
The temperature sensor 92 outputs a signal corresponding to an operating environment temperature of the printer 1. The operating environment temperature indicates a temperature under an installation environment of the printer 1. The humidity sensor 93 outputs a signal corresponding to an operating environment humidity of the printer 1. The operating environment humidity indicates a humidity under the installation environment of the printer 1. The lower frame body 5 (refer to
Operation Explanation
A basic operation of the configuration of the present embodiment will be explained with reference to
The recovery processing of the present embodiment will be explained. The CPU 70 reads out the recovery control program from the NVRAM 72 and executes the recovery control program. The CPU 70 controls the head drive portion 85, the main scanning drive portion 86, the wiper drive portion 88 and the like. The printer 1 performs the recovery processing by the recovery portion 6.
The recovery processing of the first nozzle holes 24 will be explained. The CPU 70 acquires an integrated value of the ejection amount of the white ink. The integrated value of the ejection amount of the white ink can be acquired based on, for example, a signal transmitted by the CPU 70 to the head drive portion 85. For example, the CPU 70 starts to calculate the integrated value from a start time of the base printing immediately after the previous execution of the wiping of the first nozzle surface 23, and resets the integrated value to an initial value of 0 when the CPU 70 determines the execution of the wiping of the first nozzle surface 23.
The CPU 70 acquires a number of scans. The number of scans is a number of times of the movement in the main scanning direction of the head 2, namely, the carriage 3. The number of scans can be acquired based on an output of the encoder 94, for example. The CPU 70 acquires a cumulative number of scans. The cumulative number of scans is a cumulative number of times of the relative movement of the head 2 in the main scanning direction with respect to the print medium. For example, the cumulative number of scans is a cumulative value of the number of scans after the previous execution of the flushing of the first nozzle holes 24. The CPU 70 acquires a number of empty feeds. The number of empty feeds is a number of times of the relative movement of the head 2 in the main scanning direction with respect to the print medium in a state in which the white ink is not ejected during the print operation. More specifically, the number of empty feeds is the number of scans in a state in which the white ink is not ejected during the print operation. The number of empty feeds can be acquired based on, for example, the output of the encoder 94 and the signal transmitted by the CPU 70 to the head drive portion 85.
The CPU 70 determines whether to perform the recovery processing by the recovery portion 6, based on the integrated value of the ejection amount of the white ink. When a large amount of the white ink is used, there is a high possibility that the amount of the white ink adhered to the first nozzle surface 23 is large, and also there is a high possibility that a meniscus formation state of openings of the first nozzle holes 24 is not favorable. In summary, there is a high possibility of an ejection failure of the first nozzle holes 24. Therefore, when the integrated value of the ejection amount of the white ink is equal to or more than a first reference value, the printer 1 performs the wiping of the first nozzle surface 23 and the flushing of the first nozzle holes 24. A reference time for the integrated value is, for example, a start time of the print operation or a time immediately after the previous execution of “the wiping of the first nozzle surface 23 and the flushing of the first nozzle holes 24.”
The CPU 70 determines whether to perform the recovery processing by the recovery portion 6, based on the integrated value of the ejection amount of the white ink and the number of scans. More specifically, when the integrated value is less than the first reference value, the CPU 70 performs determination processing to determine “execution of the wiping of the first nozzle surface 23 and execution of the flushing of the first nozzle holes 24” or “non-execution of the wiping of the first nozzle surface 23 and execution of the flushing of the first nozzle holes 24” in accordance with the number of scans.
When a non-ejection state of the white ink continues for a long time during the print operation, there is a high possibility of the occurrence of a viscosity increase or solidification of the white ink inside the first nozzle holes 24, and there is a high possibility of the occurrence of ejection failures of the first nozzle holes 24. Therefore, when the number of empty feeds is equal to or more than a reference number of empty feeds, the printer 1 performs the flushing of the first nozzle holes 24. More specifically, when the integrated value of the ejection amount of the white ink is less than the first reference value and the number of empty feeds is equal to or more than the reference number of empty feeds, the CPU 70 determines that the flushing of the first nozzle holes 24 is to be performed. When the integrated value is equal to or less than a second reference value, the CPU 70 determines that the wiping of the first nozzle surface 23 is not to be performed. When the integrated value exceeds the second reference value, the CPU 70 determines that the wiping of the first nozzle surface 23 is to be performed. The second reference value is smaller than the first reference value.
When the flushing of the first nozzle holes 24 is performed after the non-ejection state of the white ink continues for a long time during the print operation, it is effective to perform the flushing immediately before the next ejection of the white ink. Therefore, when the number of empty feeds is equal to or more than the reference number of empty feeds, the printer 1 performs the flushing of the first nozzle holes 24 immediately before the next ejection of the white ink. More specifically, when the integrated value of the ejection amount of the white ink is less than the first reference value and the ejection of the white ink is scheduled during a time period from the relative movement of the head 2 performed this time in the main scanning direction with respect to the print medium to a predetermined number of relative movements in the main scanning direction, the CPU 70 determines that the flushing of the first nozzle holes 24 is to be performed when the number of empty feeds is equal to or more than the reference number of empty feeds.
When the use amount of the white ink is small, there is a high possibility of the occurrence of a viscosity increase or solidification of the white ink inside the first nozzle holes 24, and there is a high possibility of the occurrence of ejection failures of the first nozzle holes 24. Therefore, the printer 1 can regularly perform the flushing of the first nozzle holes 24. More specifically, when the integrated value of the ejection amount of the white ink is less than the first reference value and the cumulative number of scans reaches a reference number of scans, the CPU 70 determines whether to perform the flushing of the first nozzle holes 24 in accordance with whether or not the integrated value is equal to or less than a third reference value. The third reference value is smaller than the second reference value. When the integrated value is equal to or less than the third reference value, the CPU 70 determines that the wiping of the first nozzle surface 23 is not to be performed by the wiper 65 and that the flushing of the first nozzle holes 24 is to be performed. When the integrated value exceeds the third reference value, the CPU 70 determines that the wiping of the first nozzle surface 23 is not to be performed and that the flushing of the first nozzle holes 24 is not to be performed.
The recovery processing of the second nozzle holes 26 will be explained. The components of the color inks are less likely to be deposited than those of the white ink. When a cloth is used as the print medium, the use amount of the color inks is smaller than that of the white ink. The possibility of the occurrence of ejection failures of the color inks in the second nozzle holes 26 is lower than the possibility of the occurrence of ejection failures of the white ink in the first nozzle holes 24. Therefore, the frequency of the recovery processing of the second nozzle holes 26 can be equal to or smaller than the frequency of the recovery processing of the first nozzle holes 24.
For example, the printer 1 performs the recovery processing of the second nozzle holes 26 at the time of the recovery processing of the first nozzle holes 24, once in every N times (N is an integer of 1 or more) of the recovery processing of the first nozzle holes 24. The CPU 70 determines the execution of the flushing of the second nozzle holes 26 in a mode in which the flushing of the second nozzle holes 26 is performed when the flushing of the first nozzle holes 24 is performed. More specifically, the CPU 70 determines the execution of the recovery processing of the second nozzle holes 26, based on the execution determination of the recovery processing of the first nozzle holes 24. The execution determination of the wiping of the second nozzle surface 25 can be made in a similar manner.
As described in detail above, the printer 1 can perform the recovery processing of the first nozzle holes 24, which have a relatively higher possibility of the occurrence of ink ejection failures than the second nozzle holes 26, at an appropriate timing. Thus, the printer 1 can reduce the possibility of the occurrence of a viscosity increase or solidification of the ink inside the first nozzle holes 24. The printer 1 can reduce the adhesion of the ink to the first nozzle surface 23 at an appropriate timing. The printer 1 can reduce the possibility of the occurrence of a viscosity increase or solidification of the ink adhered to the first nozzle surface 23. Thus, the printer 1 can secure a favorable print quality.
The use amount of the ink for base printing is normally larger than the use amount of the ink for image printing that is printed on the base printing. Therefore, in the printer 1 that performs the base printing and the image printing, it is extremely important to recover the ink ejection performance of the first nozzle holes 24 for the base printing at an appropriate timing. When a cloth is used as the print medium, the use amount of the white ink is normally larger than the use amount of each of the color inks. For example, the number of the first nozzle holes 24 for ejecting the white ink is normally larger than the number of the second nozzle holes 26 for ejecting a certain one of the color inks. Therefore, in the printer 1 that can use a cloth as the print medium, it is extremely important to recover the ink ejection performance of the first nozzle holes 24 for ejecting the white ink at an appropriate timing. It is possible that the ink for base printing contains a component whose property is significantly different from that of a component of the ink for image printing. The property is settleability or the like in an ink solvent. The white ink, which is an example of the ink for base printing, contains a component having a higher settleability than that of each of the color inks. Therefore, in the printer 1 that can use a cloth as the print medium, it is extremely important to recover the ink ejection performance of the first nozzle holes 24 for ejecting the white ink, which is the ink for base printing, at an appropriate timing. The present embodiment can favorably solve these problems and can secure a favorable print quality.
Specific Example of Control Program
A specific example of the recovery control program will be explained. The recovery control program can be downloaded from the external device 96 via the interface 95. The NVRAM 72 stores, in a rewritable manner, the recovery control program downloaded from the external device 96 by the CPU 70. The CPU 70 reads out the recovery control program from the NVRAM 72 and executes the recovery control program. In the explanation below, S is an abbreviation for step.
When the CPU 70 detects that the user has input a print start command via the operation portion 82, the CPU 70 activates an initial setting routine shown in
The CPU 70 determines that the wiper cleaning is to be performed (S11). The CPU 70 reads out a wiper cleaning execution routine from the ROM 71 or the NVRAM 72 after the completion of the initial setting routine, and executes the wiper cleaning execution routine. In this manner, the printer 1 performs the wiper cleaning. That is, the CPU 70 ends the initial setting routine without waiting for the completion of the wiper cleaning.
The CPU 70 resets the value of an integrated value Vol_W of the ejection amount of the white ink to an initial value of 0 (S12). The CPU 70 resets the value of a number of empty feeds W-npr_scan to an initial value of 0 (S13). The CPU 70 resets the value of a cumulative number of scans Pr_scan to an initial value of 0 (S14). The CPU 70 acquires a temperature Tr based on an output of the temperature sensor 92 (S15). That is, the temperature Tr is based on a signal output by the temperature sensor 92 corresponding to the operating environment temperature of the printer 1. The CPU 70 acquires a humidity Hm based on an output of the humidity sensor 93 (S16). That is, the humidity Hm is based on a signal output by the humidity sensor 93 corresponding to the operating environment humidity of the printer 1. Parameters for the integrated value Vol_W, the number of empty feeds W-npr_scan, the cumulative number of scans Pr_scan, and the like are stored in the NVRAM 72 or the RAM 73.
Based on the acquired temperature Tr, the CPU 70 sets a first reference value Vol_H, a second reference value Vol_M and a third reference value Vol_L (S17). The CPU 70 sets the first reference value Vol_H using a lookup table Vol_H (Tr) that defines a relationship between the temperature Tr and the first reference value Vol_H. The CPU 70 sets the second reference value Vol_M using a lookup table Vol_M (Tr) that defines a relationship between the temperature Tr and the second reference value Vol_M. The CPU 70 sets the third reference value Vol_L using a lookup table Vol_L (Tr) that defines a relationship between the temperature Tr and the third reference value Vol_L.
When a temperature Tr1 is smaller than a temperature Tr2, the following relationships are established in each of the lookup tables Vol_H (Tr), Vol_M (Tr) and Vol_L (Tr).
Vol_L(Tr)≤Vol_M(Tr)≤Vol_H(Tr)
Vol_H(Tr1)<Vol_H(Tr2)
Vol_M(Tr1)<Vol_M(Tr2)
Vol_L(Tr1)<Vol_L(Tr2)
In the present specific example, each of the lookup tables Vol_H (Tr), Vol_M (Tr) and Vol_L (Tr) has the following structure. When Vol_H (Tr) is less than a threshold temperature Tr0, it is a fixed value Vol_H1, and when Vol_H (Tr) is equal to or more than the threshold temperature Tr0, it is a fixed value Vol_H2. This also applies to Vol_M and Vol_L.
Based on the output of the encoder 94, the CPU 70 acquires a position of the carriage 3 in the main scanning direction and a movement direction of the carriage 3. The CPU 70 activates a white wiping/flushing determination routine shown in
The white wiping/flushing determination routine shown in
The CPU 70 updates the integrated value Vol_W by adding the white ink ejection amount ΔVol_W to the integrated value Vol_W (S203). The CPU 70 determines whether or not the updated current integrated value Vol_W is equal to or more than the first reference value Vol_H (S210). For example, immediately after the wiping of the first nozzle surface 23 (refer to S262 to be described later) or immediately after the completion of the initial setting routine, the integrated value Vol_W is less than the first reference value Vol_H (no at S210). Therefore, the CPU 70 advances the processing to S211. At S211, the CPU 70 determines whether or not the white ink ejection amount ΔVol_W acquired at S202 this time is 0. This determination corresponds to a determination as to whether or not the head 2 was in the non-ejection state of the white ink in the immediately preceding scan.
The explanation below will be made on the assumption that the printer 1 performs the image printing using the color inks on the base printing performed using the white ink on a T-shirt or the like. When the base printing is being performed, the white ink ejection amount ΔVol_W is not 0. When the white ink ejection amount ΔVol_W is not 0 (no at S211), the CPU 70 resets the value of the number of empty feeds W-npr_scan to the initial value of 0 (S211), and advances the processing to S222.
At S222, the CPU 70 determines whether or not the cumulative number of scans Pr_scan has reached a reference number of scans FL*scan. The reference number of scans FL*scan is a constant and is 20, for example. When the cumulative number of scans Pr_scan has not reached the reference number of scans FL*scan (no at S222), the CPU 70 temporarily ends the present routine. When the cumulative number of scans Pr_scan has reached the reference number scans FL*scan (yes at S222), the CPU 70 advances the processing to S223.
At S223, the CPU 70 determines whether or not the humidity Hm is equal to or more than a threshold humidity Hm0. The threshold humidity Hm0 is 40 percent, for example. Hereinafter, a series of explanations will be made on the assumption that the humidity Hm is equal to or more than the threshold humidity Hm0 (yes at S223). The CPU 70 determines whether or not the integrated value Vol_W is equal to or less than the third reference value Vol_L (S224). When the integrated value Vol_W exceeds the third reference value Vol_L (no at S224), the CPU 70 resets the value of the cumulative number of scans Pr_scan to the initial value of 0 (S231), and temporarily ends the present routine. More specifically, for example, when the cumulative number of scans Pr_scan reaches the reference number of scans FL*scan during the base printing, if the integrated value Vol_W of the white ink ejection amount, i.e., the use amount of the white ink, exceeds the third reference value Vol_L, the printer 1 does not perform the recovery processing.
When the integrated value Vol_W is equal to or less than the third reference value Vol_L (yes at S224), the CPU 70 determines that the flushing of the first nozzle holes 24 is to be performed (S241), and updates the integrated value Vol_W by adding a white ink ejection amount ΔW_FL during the flushing to the integrated value Vol_W (S242). Further, the CPU 70 resets the value of the number of empty feeds W-npr_scan and the value of the cumulative number of scans Pr_scan to the initial value of 0 (S243), and temporarily ends the present routine. More specifically, for example, when the cumulative number of scans Pr_scan reaches the reference number of scans FL*scan during the base printing, if the use amount of the white ink is small, the printer 1 performs the flushing of the first nozzle holes 24. After the CPU 70 has temporarily ended the present routine, the CPU 70 reads out a flushing execution routine from the ROM 71 or the NVRAM 72 and executes the flushing execution routine, thus the printer 1 performs the flushing of the first nozzle holes 24. That is, the CPU 70 temporarily ends the present routine without waiting for the completion of the flushing of the first nozzle holes 24.
When the non-ejection state of the white ink occurs in the immediately preceding scan (yes at S211), the CPU 70 increments the number of empty feeds W-npr_scan by one (S250), and advances the processing to S251. At S251, the CPU 70 determines whether or not a white print flag W-P_flag is “1.” When the ejection of the white ink by the first head portion 21 is scheduled within a predetermined number of scans N_W-P from immediately after the immediately preceding scan, the white print flag W-P_flag is “1.” When the ejection of the white ink by the first head portion 21 is not scheduled within the predetermined number of scans N_W-P from immediately after the immediately preceding scan, the white print flag W-P_flag is “0.” The predetermined number of scans N_W-P is two, for example.
When the white print flag W-P_flag is “0” (no at S251), the CPU 70 advances the processing to S222. When the white print flag W-P_flag is “1” (yes at S251), the CPU 70 advances the processing to S252. At step S252, the CPU 70 determines whether or not the number of empty feeds W-npr_scan is equal to or more than a reference number of empty feeds no_print_scan. During the base printing, normally, the number of empty feeds W-npr_scan is less than the reference number of empty feeds no_print_scan (no at S252). Therefore, the CPU 70 advances the processing to S222. When the number of empty feeds W-npr_scan reaches the reference number of empty feeds no_print_scan during the base printing (yes at S252), the CPU 70 advances the processing to S253.
At S253, the CPU 70 determines whether or not the integrated value Vol_W is equal to or less than the second reference value Vol_M. When the integrated value Vol_W is equal to or less than the second reference value Vol_M (yes at S253), the CPU 70 temporarily ends the present routine after performing the processing at S241 to S243. When the integrated value Vol_W exceeds the second reference value Vol_M (no at S253), the CPU 70 determines that the wiping of the first nozzle surface 23 is to be performed and the flushing of the first nozzle holes 24 is to be performed (S261). Further, the CPU 70 resets the integrated value Vol_W, the value of the number of empty feeds W-npr_scan and the value of the cumulative number of scans Pr_scan to the initial value of 0 (S262), and temporarily ends the present routine.
More specifically, when the number of empty feeds W-npr_scan reaches or exceeds the reference number of empty feeds no_print_scan (yes at S252), immediately before the next ejection of the white ink (yes at S251), the printer 1 performs the flushing of the first nozzle holes 24 (S241 or S261). When the use amount of the white ink exceeds the second reference value Vol_M (no at S253), the printer 1 performs the wiping of the first nozzle surface 23 (S261), and when the use amount of the white ink is equal to or less than the second reference value Vol_M (yes at S253), the printer 1 does not perform the wiping of the first nozzle surface 23 (S241).
For example, when the integrated value Vol_W reaches or exceeds the first reverence value Vol_H during the base printing (yes at S210), the CPU 70 advances the processing to S261 and S262 and temporarily ends the present routine. More specifically, when the use amount of the white ink is equal to or more than the first reference value Vol_H, the printer 1 performs the wiping of the first nozzle surface 23 and the flushing of the first nozzle holes 24.
When the use amount of the white ink is small (no at S210) and the non-ejection state of the white ink occurs (yes at S211), the CPU 70 increments the number of empty feeds W-npr_scan by one (S250) and advances the processing to S251. The processing from S251 onward is the same as that described above. That is, when the number of empty feeds W-npr_scan reaches or exceeds the reference number of empty feeds no_print_scan (yes at S252), immediately before the next ejection of the white ink (yes at S251), the printer 1 performs the flushing of the first nozzle holes 24 (S241 or S261). When the use amount of the white ink exceeds the second reference value Vol_M (no at S253), the printer 1 performs the wiping of the first nozzle surface 23 (S261), and when the use amount of the white ink is equal to or less than the second reference value Vol_M (yes at S253), the printer 1 does not perform the wiping of the first nozzle surface 23 (S241).
The processing relating to humidity will be explained. When the use amount of the white ink is small or when the non-ejection state of the white ink continues, the possibility of the occurrence of a viscosity increase or solidification of the white ink adhered to the first nozzle surface 23 further increases as the humidity decreases. Therefore, when the cumulative number of scans Pr_scan reaches the reference number of scans FL*scan (yes at S222) and the humidity Hm is less than the threshold humidity Hm0 (no at S223), the CPU 70 determines that the wiping of the first nozzle surface 23 is to be performed and the flushing of the first nozzle holes 24 is to be performed (S261).
The CPU 70 activates a color flushing determination routine shown in
The color flushing determination routine shown in
When the execution of the flushing of the first nozzle holes 24 has been determined (yes at S31), the CPU 70 increments the value of a counter CC by one (S32). The CPU 70 determines whether or not the value of the counter CC has reached a predetermined value CC_FL. The predetermined value CC_FL is an integer of 1 or more. When the value of the counter CC has not reached the predetermined value CC_FL (no at S33), the CPU 70 skips all the processing from S34 onward and temporarily ends the present routine. In summary, the printer 1 does not perform the flushing of the second nozzle holes 26.
When the execution of the flushing of the first nozzle holes 24 has been determined (yes at S31) and the value of the counter CC has reached the predetermined value CC_FL (yes at S33), the CPU 70 determines that the flushing of the second nozzle holes 26 is to be performed (S34), resets the value of the counter CC to an initial value of 0 (S35), and temporarily ends the present routine. More specifically, the printer 1 performs the recovery processing of the second nozzle holes 26 at the time of the recovery processing of the first nozzle holes 24, once in every M times (M=CC_FL) of the recovery processing of the first nozzle holes 24.
The present disclosure is not limited to the above-described embodiment. Various modifications can be made to the above-described embodiment. Representative modified examples will be explained below. The modified examples are also not limited to those described below. One or more of the plurality of modified examples can be combined with the above-described embodiment. A part of one of the modified examples and a part of another modified example can be combined with the above-described embodiment.
The application target of the present disclosure is not limited to the printer 1 that uses a cloth as the print medium. For example, the printer 1 may be capable of printing on paper and an OHP sheet etc. The mechanical structure of the printer 1 is not limited to the specific examples shown in the above-described embodiment. For example, the first head portion 21 and the second head portion 22 may be individually attachable to and detachable from the carriage 3 or may be integrally attachable to and detachable from the carriage 3. In other words, the first head portion 21 and the second head portion 22 may be integrated with each other. The first head portion 21 may be disposed to the front of the second head portion 22, or may be disposed to the left or right of the second head portion 22. Both the first nozzle surface 23 and the second nozzle surface 25 may be provided on the single head 2, and the arrangement form of the first nozzle surface 23 and the second nozzle surface 25 is optional. The aforementioned head 2 provided with both the first nozzle surface 23 and the second nozzle surface 25 may be provided singularly or may be provided in a plurality in the printer 1. In contrast to the above-described embodiment, the carriage 3 may move in the sub-scanning direction and the platen 51, namely, the print medium, may move in the main scanning direction. The head 2 may be fixed to the upper frame body 4 and the platen 51 may move in the main scanning direction and the sub-scanning direction. The second recovery portion 62 need not necessarily be provided with the wiper 65 and the wiper cleaner 66. The waste ink reservoir provided in the flushing portion 64 of the first recovery portion 61, and the waste ink reservoir provided in the flushing portion 64 of the second recovery portion 62 may be formed as an integrated body or may be formed as separate bodies.
All or a part of the recovery control program may be stored in the ROM 71. In other words, the recovery control program can be stored in various storage devices that can be read by the CPU 70. A typical example of the aforementioned storage devices is a non-transitory storage medium, such as a hard disk drive (HDD). The non-transitory storage medium need not necessarily include a transitory storage medium, such as a transmission signal.
A control portion and a processor of the present disclosure are not limited to the CPU 70, and other electronic devices, such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA), may be used. More specifically, for example, the ASIC can be used in place of the CPU 70, the ROM 71, the NVRAM 72 and the RAM 73. Functions of the control portion and the processor of the present disclosure can be distributed to electronic devices, such as a plurality of CPUs. In other words, each of the steps of the above-described flowcharts may be performed through distributed processing by the plurality of electronic devices.
The printer 1 may receive the temperature Tr or a signal corresponding to the temperature Tr from the external device 96 and the like. In other words, the temperature sensor 92 can be omitted. Similarly, with respect to the humidity Hm, the humidity sensor 93 can be omitted.
With respect to each of the processing steps of the above-described embodiment, an order of the steps can be changed and omission or addition of the steps can be made if necessary. For example, S223 can be omitted. In this case, a structural element relating to the acquisition of humidity, such as the humidity sensor 93, can be omitted. S242 can be omitted. More specifically, the white ink ejection amount during flushing need not necessarily be added to the integrated value Vol_W.
The initial value at the time of resetting may be a number other than 0. The reference number of scans FL*scan may be changed by an operation of the user. The predetermined number of scans N_W-P may be 1, for example. In addition to those described above, the constant and the like used in the above-described specific examples can be changed as appropriate.
In the above-described embodiment, a detailed explanation of the wiping of the second nozzle surface 25 is omitted. However, the wiping of the second nozzle surface 25 can be performed at an appropriate timing. For example, when the CPU 70 determines the execution of the wiping of the first nozzle surface 23, the CPU 70 can also determine the execution of the wiping of the second nozzle surface 25. The CPU 70 can perform the determination processing of the wiping of the second nozzle surface 25 using a routine similar to the color flushing determination routine shown in
The printer 1 can perform the purge operation at an appropriate timing. For example, at S261, the CPU 70 can also determine the execution of the purge operation. At S261, the CPU 70 can determine the execution of the purge operation instead of the execution of the flushing.
The apparatus and methods described above with reference to the various embodiments are merely examples. It goes without saying that they are not confined to the depicted embodiments. While various features have been described in conjunction with the examples outlined above, various alternatives, modifications, variations, and/or improvements of those features and/or examples may be possible. Accordingly, the examples, as set forth above, are intended to be illustrative. Various changes may be made without departing from the broad spirit and scope of the underlying principles.
Number | Date | Country | Kind |
---|---|---|---|
2015-192379 | Sep 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20110018921 | Fujisawa | Jan 2011 | A1 |
20120026230 | Danzuka | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
2013-071405 | Apr 2013 | JP |
Number | Date | Country | |
---|---|---|---|
20170087852 A1 | Mar 2017 | US |