This application claims the benefit of priority to Japanese Patent Application No. 2009-279833 filed Dec. 9, 2009, the contents of which are hereby incorporated by reference in their entirety.
1. Technical Field
The present invention relates to a print device, a transport unit, a transport roller, and a method of producing the transport roller.
2. Related Art
Hitherto, there has been used a print device which prints information to a sheet-shaped recording medium, and a transport unit for transporting the recording medium is provided on the print device. The transport unit has a transport roller for transporting the recording medium. A solid rod-shaped member is generally used in the transport roller. The recording medium is held in the transport roller and is transported by the rotation of the transport roller. Furthermore, since the printing is performed with respect to the recording medium together with the transportation, there is a need to transport the recording medium at a high accuracy and position the recording medium for a suitable printing.
On the other hand, there is a problem in that the solid material has increased in weight and cost, so that further weight and cost reductions are being considered. Herein, in JP-A-2006-289496, there is described a technique which bends a metallic plate so as to be molded in a cylindrical shape, thereby producing a hollow shaft.
However, when it is considered that the technique described in JP-A-2006-289496 is applied to a transport roller of a print device or the like, the following problem is generated.
In a case where the metallic plate is bent to mold a cylindrical transport roller, since an outer periphery requires a peripheral length longer than that of an inner periphery, a pair of end surfaces of a metallic plate comes into contact with each other in an inner periphery surface side thereof and a gap is formed in an outer periphery surface side. When the recording medium is transported using the transport roller, there is a fear that a step will be generated in the transport roller in the portion of the gap, which makes it impossible to perform the transportation and the positioning of the recording medium at a high accuracy.
An advantage of some aspects of the invention is to provide a print device that can transport an item to be transported such as a recording medium at a high accuracy, a transport unit, a transport roller and a method of providing the transport roller.
According to an aspect of the invention, there is adopted a configuration in which, in a print device including a transport roller for transporting a recording medium in which a pair of end surfaces of a metallic plate faces each other so as to be molded in a cylindrical shape, wherein at least one end surface of the pair of end surfaces includes a first portion which comes into plane contact with the other end surface of the pair of end surfaces at an outer periphery surface side of the transport roller, and a second portion which has a gap between the second portion and the other end surface at an inner periphery surface side.
According to the aspect of the invention, since the pair of end surfaces is in plane-contact with each other at the outer periphery surface side, a gap, a concave portion or the like which opens to the outer periphery surface side does not exist, and even if the transport roller rotates, the outer periphery surface is always in contact with the recording medium. Moreover, since the pair of end surfaces is in plane contact with each other, strength of the transport roller, particularly, strength in a joint of the pair of end surfaces is improved.
Moreover, it is preferable to adopt a configuration in which the pair of end surfaces includes the first portion and the second portion, and an angle formed by the second portion and the inner periphery surface is greater than 90° in any end surface.
Furthermore, it is preferable to adopt a configuration in which only one end surface includes the first portion and the second portion, and the angle formed by the second portion and the inner periphery surface is greater than 90°.
Moreover, it is preferable to adopt a configuration in which the first portion in the sectional surface of the metallic plate in a direction perpendicular to the end surface is shorter than the second portion in the sectional surface.
Furthermore, it is preferable to adopt a configuration in which the first portion and the second portion are provided on a place corresponding to a holding area of the recording medium at least in the transport roller.
Moreover, according to a further aspect of the invention, there is adopted a configuration in which, in a transport unit including a transport roller in which a pair of end surfaces of a metallic plate faces each other so as to be molded in a cylindrical shape, at least one end surface of the pair of end surfaces includes a first portion which comes into plane contact with the other end surface of the pair of end surfaces at an outer periphery surface side of the transport roller, and a second portion which has a gap between the second portion and one end surface at an inner periphery surface side.
Furthermore, according to a still further aspect of the invention, there is adopted a configuration in which, in a transport roller in which a pair of end surfaces of a metallic plate faces each other so as to be molded in a cylindrical shape, at least one end surface of the pair of end surfaces includes a first portion which comes into plane contact with one end surface of the pair of end surfaces at an outer periphery surface side, and a second portion which has a gap between the second portion and one end surface at an inner periphery surface side.
Moreover, according to a still further aspect of the invention, there is adopted a method of producing a transport roller in which a pair of end surfaces of a metallic plate faces each other so as to be molded in a cylindrical shape which includes the steps of forming a first portion which is connected to a one plate surface in a plate thickness direction of the metallic plate in at least one end surface of a pair of end surfaces, and a second portion which is connected to the other plate surface of an opposite side of the one plate surface and is different from the first portion; and bending the metallic plate so that the one plate surface becomes an outer periphery surface, thereby forming the metallic plate in a cylindrical shape, wherein, in the bending process, the first portion is brought into plane contact with one end surface of the pair of end surfaces, and a gap is formed between the second portion and the one end surface.
According to the aspect of the invention, since the pair of end surfaces is in plane-contact with each other at the outer periphery surface side, a gap, a concave portion or the like which opens to the outer periphery surface side is not formed, and even if the transport roller rotates, the outer periphery surface is always in contact with the recording medium. Moreover, since the pair of end surfaces is in plane-contact with each other, strength of the transport roller, particularly, strength in a joint of the pair of end surfaces is improved.
Moreover, it is preferable to adopt the method in which, in the forming process, the first portion and the second portion are formed in any of the pair of end surfaces, and an angle formed by the second portion and the other plate surface is greater than 90° in any end surface.
Furthermore, it is preferable to adopt the method in which, in the forming process, the first portion and the second portion are formed in only the one end surface, and an angle formed by the second portion and the other plate surface is greater than 90°.
Moreover, it is preferable to adopt the method in which, in the forming process, the first portion in the sectional surface of the metallic plate in a direction perpendicular to the end surface is formed so as to be shorter than the second portion in the sectional surface.
Furthermore, it is preferable to adopt the method in which, in the forming process, the first portion and the second portion are formed on a place of the end surface which corresponds to a holding area of the recording medium at least in the transport roller.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, an embodiment of the invention will be described with reference to
A configuration of a printer 1 according to the present embodiment will be described with reference to
The printer (print device) 1 is a print device which ejects ink to a recording paper P that is a recording medium, thereby recording information such as letters or images. The printer 1 has a paper feeding portion 2, a transport portion (a transport unit) 3, a paper discharge portion 4, a head portion 5, and a control portion CONT.
The paper feeding portion 2 holds the recording paper P and supplies the recording paper P toward the transport portion 3, and has a paper tray 11 and a paper feeding roller 12. The paper tray 11 holds a plurality of recording papers P. As the recording paper P, a recording medium of a sheet shape that can be printed by ink is used, and normal paper, coated paper, a sheet for an OHP (an overhead projector), glossy paper, glossy film or the like are used.
The paper feeding roller 12 is a roller which supplies the recording paper P toward the transport portion 3 by being rotated, and is provided on the transport portion 3 side of the paper tray 11. In addition, a separation pad (not shown) is provided at a position facing an outer periphery surface of the paper feeding roller 12, so that the separation pad cooperates with the paper feeding roller 12 and can supply the recording paper P to the transport portion 3 one sheet at a time.
The transport portion 3 transports the recording paper P, which has been supplied from the paper feeding portion 2, toward the paper discharge portion 4 and is a place where the printing operation relative to the recording paper P is performed. The transport portion 3 has a transport roller 13, a driven roller 14, a platen 15, a diamond rib 16, and a driving portion 6 (see
The transport roller 13 is a roller for accurately transporting the recording paper P to a predetermined printing position by being rotated, and is a shaft member which extends to a direction going directly to a paper feeding direction of the paper feeding portion 2 and in a horizontal direction and is molded in the form of a cylinder. The transport roller 13 is rotatably supported by a pair of bearings (not shown) having an approximate U shape which is provided on the transport portion 3 and is rotated by the driving of the driving portion 6. In addition, the details of the transport roller 13 will be described later.
The driven roller 14 is an approximately cylindrical member and a plurality of driven rollers 14 is disposed at intervals along an axial direction of the transport roller 13. Furthermore, the driven roller 14 is rotatably provided at a position facing a high frictional layer 32 (see
The platen 15 is a place for supporting the recording paper P from a lower part when the printing to the recording paper P by the head portion 5 is carried out, and has a surface which is approximately parallel to a horizontal surface. The diamond rib 16 is a protruding portion which protrudes from an upper surface of the platen 15 toward the upper part, and a plurality of diamond ribs 16 is disposed at intervals along an axial direction of the transport roller 13. Furthermore, a top surface of the diamond rib 16 is formed to be approximately parallel with the horizontal surface, the recording paper P during printing is supported from the lower part by the top surface.
The paper discharge portion 4 discharges the recording paper P after printing form the transport portion 3 and has a paper discharge roller 17 and a paper discharge coarse roller 18. The paper discharge roller 17 and the paper discharge coarse roller 18 can rotate in opposite directions to each other, whereby the recording paper P is taken out and discharged by the rotation.
The head portion 5 ejects ink with respect to the recording paper P mounted on the transport portion 3, and has an ejection head 19 and a carriage 20. The ejection head 19 is equipment that ejects ink in accordance with instructions of the control portion CONT, and an ejection port (not shown) thereof is provided to face the top surface of the diamond rib 16. The carriage 20 holds the ejection head 19 at a lower side thereof and is provided movably back and forth in the axial direction of the transport roller 13. Furthermore, a driving portion (not shown) for reciprocating the carriage 20 in accordance with instructions of the control portion CONT is connected to the carriage 20.
Next, a configuration for rotating the transport roller 13 will be described with reference to
As described above, the transport portion 3 has the driving portion 6. The driving portion 6 rotates the transport roller 13 and has a motor 21 and a pinion gear 22. The motor 21 is an electric motor that rotates the transport roller 13 in accordance with instructions of the control portion CONT. The control portion CONT controls the rotation of the transport roller 13 by controlling the rotation of the motor 21, so that the control portion CONT has a configuration capable of transporting the recording paper P at a high positioning accuracy. The pinion gear 22 is a gear that is integrally connected with an output shaft of the motor 21.
On the transport roller 13, a first drive gear 23, a second drive gear 24 and a third drive gear 25 are mounted. The first drive gear 23 is a gear for rotating the transport roller 13 and is integrally mounted on an end portion of the driving portion 6 installation side in the transport roller 13 by a press-fit. The first drive gear 23 is configured so as to be engaged with the pinion gear 22, so that the driving force of the motor 21 is transmitted to the transport roller 13 via the pinion gear 22 and the first driving gear 23, thereby rotating the transport roller 13.
The second drive gear 24 is a gear for transmitting the driving force of the motor 21 to the paper discharge roller 17, has a diameter smaller than the first drive gear 23, and is moved adjacent to and integrally fixed to the first drive gear 23. Furthermore, the second drive gear 24 is integrally mounted on the transport roller 13 by the press-fit.
The third drive gear 25 is a gear for transmitting the rotational driving force of the transport roller 13 to another instrument (not shown) and is integrally connected to an end portion of a side opposite to the first drive gear 23 of the transport roller 13 by press-fitting. In addition, a configuration may be adopted in which the third drive gear 25 rotates synchronously with the transport roller 13 by providing a rotation stop portion (a pin or a recess portion) at each of the transport roller 13 and the third drive gear 25 without the use of the press-fit.
A paper discharge drive gear 26 is integrally mounted on the end portion of the driving portion 6 side in the paper discharge roller 17. A middle gear 27 is provided between the paper discharge drive gear 26 and the second drive gear 24, and the middle gear 27 is engaged with the second drive gear 24 and the paper discharge drive gear 26, respectively. That is, it is configured such that the driving force of the motor 21 is transmitted to the paper discharge roller 17 via the second drive gear 24, the middle gear 27 and the paper discharge drive gear 26, thereby rotating the paper discharge roller 17.
Next, a configuration of the transport roller 13 will be described with reference to
The roller main body 31 is a shaft member in which a metallic plate having approximately regular plate thickness is bent so as to be molded in the form of a cylinder. A steel plate is used as the metallic plate, but a metallic plate such as aluminum or stainless steel may be used. The roller main body 31 has a joint 36 on which a first end surface (end surface) 34 and a second end surface (end surface) 35, which are a pair of end surfaces of the metallic plate, come into contact with each other. The joint 36 extends in parallel with a center axis direction of the roller main body 31.
A first end surface outer edge portion (a first portion) 34a, which is connected to an outer periphery surface (one first plate surface) 31a of the roller main body 31, and a first end surface inner edge portion (a second portion) 34b which is connected to an inner periphery surface (the other plate surface) 31b of the roller main body 31 are formed in the first end surface 34. The first end surface outer edge portion 34a and the first end surface inner edge portion 34b are formed all over the length of the roller main body 31. A second end surface outer edge portion (a first portion) 35a connected with the outer periphery surface 31a and a second end surface inner edge portion (a second portion) 35b connected with the inner periphery surface 31b are formed in the second end surface 35. The second end surface outer edge portion 35a and the second end surface inner edge portion 35b are formed all over the length of the roller main body 31.
The first end surface outer edge portion 34a and the second end surface outer edge portion 35a are in plane-contact with each other. That is, in the joint 36, a gap, a concave portion or the like that opens to the outer periphery surface 31a side does not exist. Thus, it is possible to always maintain the contact of the outer periphery surface 31a and the recording paper P when the transport roller 13 rotates. Furthermore, since the first end surface outer edge portion 34a and the second end surface outer edge portion 35a are in plane-contact with each other, strength of the roller main body 31, in particular, strength in the vicinity of the joint 36 is improved. Even if a bending or twisting force is applied to the roller main body 31, it is possible to prevent the first end surface 34 and the second end surface 35 from being separated from each other.
A gap 37 is formed between the first end surface inner edge portion 34b and the second end surface inner edge portion 35b. The gap 37 has a shape in which the width gradually becomes wider as it faces toward the inner periphery surface 31b side. A first angle α1, which is formed by the first end surface inner edge portion 34b and the inner periphery surface 31b, and a second angle α2, which is formed by the second end surface inner edge portion 35b and the inner periphery surface 31b, are greater than 90°.
As described later, in both of a pair of end surfaces 34 and 35 of the present embodiment, an end surface adjustment machining is carried out. For that reason, for example, even when a stress or the like due to the machining is generated in the vicinity of the end surfaces 34 and 35, since the stress is generated in any of the end surfaces 34 and 35, it is possible to suppress the distortion, the deformation or the like caused by non-uniformity of the stress, in the transport roller 13 (the roller main body 31) which is molded by bending the metallic plate.
The roller main body 31 has a plating layer 38 formed on the surface thereof. The plating layer 38 is formed on the surfaces of the outer periphery surface 31a and the inner periphery surface 31b, and the first end surface inner edge portion 34b and the second end surface inner edge portion 35b. The plating layer 38 may be formed by the use of any method of an electric field plating and an electroless plating, and may be formed by overlapping a plurality of plating layers. As a type of plating, for example, a nickel plating, a zinc plating, a chromium plating or the like is used.
The high frictional layer 32 is a coating layer which is formed on the outer periphery surface 31a other than both end portions of the roller main body 31, thereby improving a frictional coefficient between the high frictional layer 32 and the recording paper P to reliably hold the recording paper P. In order to transport the recording paper P at a high positioning accuracy, since the transport roller 13 needs to hold the recording paper P without slipping, the high frictional layer 32 is formed on a holding area F of the outer periphery surface 31a which is an area where the recording paper P is held during transportation.
The high frictional layer 32 has a resin layer formed of epoxy-based resin, polyester-based resin or the like, and ceramic particles which are dispersed and disposed on the resin layer surface. Aluminum oxide (alumina), silicon carbide, silicon dioxide or the like is used in the ceramic particles. The particle diameter of the ceramics particles is regulated by a crushing treatment, and the ceramics particles have sharp end surfaces by performing the crushing treatment, whereby the frictional coefficient between the ceramics particles and the recording paper P can be improved. In addition, instead of the high frictional layer 32, the frictional coefficient between the ceramics particles and the recording paper P may be improved by forming minute concave and convex portions (a vanishing treatment or the like) on the outer periphery surface 31a.
In addition, in the configuration shown in
In addition, instead of the transport roller 13 as described above, a second transport roller (transport roller) 13A which is a modified example thereof may be used. The second transport roller 13A, which is a modified example of the transport roller 13, will be described with reference to
The second transport roller 13A is a modified example of the transport roller 13. The second transport roller 13A has a second roller main body 31A and a high frictional layer 32. The second roller main body 31A is a shaft member in which a metallic plate having regular plate thickness has been bent so as to be molded in the form of a cylinder, and has a joint 36 on which a first end surface 34 and a second end surface 35, which are a pair of end surfaces of the metallic plate, come into contact with each other. On the first end surface 34, a first end surface outer edge portion 34a and a first end surface inner edge portion 34b are formed. On the other hand, the second end surface 35 faces the first end surface 34, and is formed to have an approximately plane which is approximately parallel to a diameter direction of the second roller main body 31A.
The first end surface outer edge portion 34a is in plane-contact with the second end surface 35. That is, a gap or a concave portion, which opens to the outer periphery surface 31a side, does not exist in the joint 36. Thus, it is possible to always hold the contact of the outer periphery surface 31a and the recording paper P when the second transport roller 13A rotates. Furthermore, since the first end surface outer edge portion 34a and the second end surface 35 are in plane-contact with each other, the strength of the second roller main body 31A, particularly, the strength in the vicinity of the joint 36 is improved. Even if bending or twisting force is applied to the second roller main body 31A, it is possible to prevent the first end surface 34 and the second end surface 35 being separated from each other.
A second gap (gap) 37A is formed between the first end surface inner edge portion 34b and the second end surface 35. The second gap 37A has a shape in which the width thereof gradually becomes wider as it faces the inner periphery surface 31b side. A first angle α1 formed by the first end surface inner edge portion 34b and the inner periphery surface 31b is greater than 90°, and a third angle α3 formed by the second end surface 35 and the inner periphery surface 31b is equal to or less than 90°. That is, the first end surface 34 (and a second end surface 35) in the joint 36 has a shape that inclines in a predetermined direction in regard to a circumferential direction. When the second transport roller 13A is rotated in the direction along the inclination to transport the recording paper P, even if pressing force due to the transportation is added with respect to the joint 36, the separation of the first end surface 34 and the second end surface 35 hardly occurs. Thus, it is possible to suppress the distortion, the deformation or the like of the second transport roller 13A which may be generated due to the transportation.
Next, a method of molding the transport roller 13 will be described with reference to
As shown in
As shown in
Next, as shown in
The process (step S1) for molding the roller main body 31 from the large metallic plate by the progressive press machining will be described with reference to
In the molding of the roller main body 31 in the present embodiment, the progressive press machining is used.
This machining method is a method of sequentially carrying out a punching machining and a press machining with respect to the metallic plate, while transporting the metallic plate which is the material at a regular pitch.
Firstly, the large metallic plate 60 as shown in
Next, as shown in
The first end surface 34 and the second end surface 35, which are a pair of end surfaces of the metallic plate 30 in a direction perpendicular to the extending direction, are places where they come into contact with each other to form the joint 36 when the metallic plate 30 is molded in the form of a cylinder. In addition, both of the first end surface 34 and the second end surface 35 after the punching machining are perpendicular to the outer periphery surface 31a or the inner periphery surface 31b and both of the outer periphery surface 31a and the inner periphery surface 31b have the same width.
A convex portion 39 and a concave portion 40 are respectively formed on the first end surface 34 and the second end surface 35. The convex portion 39 and the concave portion 40 are for preventing a difference in the extending direction of the first end surface 34 and the second end surface 35 by the fitting of the convex portion 39 into the concave portion 40. A front end portion 39a of the convex portion 39 and a bottom portion 40a of the concave portion 40 are formed in parallel to the extending direction of the metallic plate 30.
The frame portion 62 is an approximately band-shaped plate portion which extends in a direction approximately perpendicular to the extending direction of the metallic plate 30, and is molded by the removal of the portion of the area S from the large metallic plate 60. The above-mentioned opening portions 61 are arranged in a row on the frame portion 62. A connecting portion 63 (commonly known as a tie bar) connecting the metallic plate 30 and the frame portion 62 each other spans between the metallic plate 30 and the frame portion 62, and the metallic plate 30 is supported by the frame portion 62 via the connecting portion 63.
In addition, it is desirable that a broken surface or a burr, which is formed on the end surface (a cutting surface) of the metallic plate 30 at the time of punching machining, be disposed at the inner side of a bending direction in the bending machining as described later.
The metallic plate 30 is molded from the large metallic plate 60 by the punching machining as shown in
On the cutting surface of the metallic plate 30, namely, the first end surface 34 and the second end surface 35, a lax portion sd, a shear surface sp, a broken surface bs and a burr (not shown) are often formed. Herein, the surface of the paper upper side connected to the relatively smooth lax portion sd is called the outer periphery surface 31a, and the surface of the paper lower side, which is connected to the cutting surface bs and in which the burr may be generated, is called the inner periphery surface 31b. By bending the metallic plate 30 in this direction, the broken surface bs or the burr is obstructed when the roller main body 31 is molded, whereby it is possible to prevent the first end surface 34 and the second end surface 35 from being separated from each other.
Moreover, by bending the metallic plate 30 in the direction to bring the first end surface 34 and the second end surface 35 into contact with each other, the broken surface bs or the burr is provided at the inner side of the roller main body 31, whereby it is possible to prevent them from protruding from the outer periphery surface 31a. For that reason, it is possible to omit a deburring process, thereby improving the productivity of the roller main body 31.
Next, an end surface regulation machining (step S12) is carried out with respect to the first end surface 34 and the second end surface 35 of the metallic plate 30.
As shown in
Herein, although it is not particularly limited, in the present embodiment, the first end surface outer edge portion 34a in the sectional surface of the metallic plate 30 shown in
The first end surface inner edge portion 34b and the second end surface inner edge portion 35b have approximately plane shapes, respectively. By the regulation, a first angle β1 at the time when the flat plate is formed by the first end surface inner edge portion 34b and the inner periphery surface 31b and a second angle β2 at the time when the flat plate is formed by the second end surface inner edge portion 35b and the inner periphery surface 31b are greater than 90°.
Furthermore, by carrying out the end surface regulation machining, an outer periphery surface width W1, which is a length in a width direction of the outer periphery surface 31a, is greater than an inner periphery surface width W2 which is a length in the width direction of the inner periphery surface 31b. For that reason, when the metallic plate 30 is bent to mold the cylindrical roller main body 31, it is possible to easily bring the first end surface outer edge portion 34a and the second end surface outer edge portion 35a into plane-contact with each other.
In the end surface regulation machining of the present embodiment, the machining is carried out with respect to any of the first end surface 34 and the second end surface 35. For this reason, for example, even when the stress or the like due to the machining is generated in the vicinity of the first end surface 34 and the second end surface 35, since the stress is generated in any of a pair of end surfaces 34 and 35, it is possible to suppress the distortion, the deformation or the like caused by the non-uniformity of the stress in the transport roller 13 (the roller main body 31) molded by bending the metallic plate 30.
In addition, the above-mentioned end surface regulation machining may be carried out only in any one of the first end surface 34 and the second end surface 35. By the regulation in this manner, the second roller main body 31A shown in
Furthermore, the above-mentioned end surface regulation machining may be carried out only in the place corresponding to the holding area F shown in
Next, the bending machining (step S13) in the progressive press machining shown in
Firstly, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
In addition, since the roller main body 31 (the transport roller 13) is molded by the use of the large metallic plate 60 in which the winding due to the steel plate coil remains, it is desirable to mold the surface at inner periphery side of the coil so as to be the inner periphery surface of the roller main body 31. That is, the winding of the large metallic plate 60 by the steel plate coil is in a bent state in which the surface at the inner periphery surface of the steel plate coil becomes the concave surface. That is, in the large metallic plate 60 that molds the roller main body 31, the winding, which is bent to the inner periphery side of the roller main body 31, remains.
For this reason, the winding does not act, at least in a direction of opening the joint 36 of the roller main body 31. Thus, as compared to a case where the winding which is bent to the outer periphery side of the roller main body 31 remains, the joint 36 of the roller main body 31 can be made difficult to open. As a result, even when the stress acts in the direction of opening the joint 36 of the roller main body 31, the joint 36 can be prevented from opening, whereby it is possible to obtain the transport roller 13 capable of obtaining high transport accuracy.
Furthermore, the circumferential direction (bending direction) of the roller main body 31 is the same as the winding direction (a rolling direction of the large metallic plate 60) of the steel plate coil. For that reason, it is possible to match the bending direction of the large metallic plate 60 for molding the roller main body 31 with the bent direction due to the winding. As a result, the winding of the large metallic plate 60 for molding the roller main body 31 acts in a direction of closing the joint 36 of the roller main body 31. Thus, the opening of the joint 36 of the roller main body 31 can be more effectively prevented.
Finally, as shown in
Next, a known centerless polishing machining is performed with respect to the outer periphery surface of the roller main body 31 molded in the form of an approximate cylinder (step S2). By the polishing machining, the diameter, the roundness and the accuracy of flexure of the roller main body 31 is regulated to a suitable range.
Next, the plating treatment is carried out in the roller main body 31 (step S3). By the plating treatment, the plating layers 38 are formed on the inner and outer periphery surfaces of the roller main body 31, the first end surface inner edge portion 34b, and the second end surface inner edge portion 35b. In addition, even if the steel plate such as, for example, SECC in which the plating layer is formed in advance is used, the base material of the steel plate is exposed by the punching machining, so the first end surface 34 and the second end surface 35 easily corrode. Thus, it is necessary to form a suitable plating layer on the first end surface inner edge portion 34b and the second end surface inner edge portion 35b by this process.
Finally, the high frictional layer 32 is formed on the holding area F in the outer periphery surface 31a of the roller main body 31. Firstly, both end portions of the roller main body 31 are masked, epoxy-based resin or polyester-based resin is dispersed in the solvent, and the solution is applied to the outer periphery surface of the roller main body 31, thereby forming the resin layer. Next, the ceramics particles such as alumina particles are attached to the surface of the resin layer by the use of a powder coating method. Finally, the resin layer is cured by the heating treatment, whereby the high frictional layer 32 in which the ceramics particles are disposed at the surface is formed.
In addition, as a method of forming the high frictional layer 32, instead of the powder coating method, the ceramics particles may be dispersed in the solvent, thereby applying the solution onto the surface of the resin layer. Furthermore, the resin layer containing the ceramics particles may be formed by dispersing the ceramics particles in the solvent together with epoxy-based resin or polyester-based resin, thereby applying the solution onto the outer periphery surface of the roller main body 31.
The molding of the transport roller 13 is completed by the above-mentioned method.
In addition, at both end portions of the roller main body 31 (the transport roller 13), at one side or both sides thereof as described above, an engagement portion for connecting to various connection components such as the first drive gear 23 or the third drive gear 25 shown in
Furthermore, as shown in
Thus, by engaging the connection component such as the toothed wheel (not shown) with the engagement portion 73 formed in the form of a D in appearance, the connection component can be attached to the roller main body 31 (the transport roller 13) without drifting. Furthermore, in regard to the engagement portion 73, since the groove-shaped opening 73a communicating to the inner hole of the hollow pipe (the roller main body 31) is formed, even by the use of the opening 73a, the connection component can be attached to the roller main body 31 without drifting. Specifically, the convex portion is formed in the connection component, and the convex portion is fitted to the opening 73a, which makes it possible to prevent the drifting.
Furthermore, as shown in
Thus, the connection component such as a toothed wheel (not shown) is engaged with the groove 74a or the D cut portion 74b, whereby the connection component can be attached to the roller main body 31 (the transport roller 31) without drifting. Moreover, in the engagement portion 74, even by the use of the opening 74c formed between the bending pieces 74d, the connection component can be attached to the roller main body 31 without drifting. Specifically, by forming the convex portion in the connection component and fitting the convex portion to the opening 74c, the drifting can be prevented.
Furthermore, as shown in
Thus, the connection component such as a toothed wheel (not shown) is engaged with the groove 75a or the part which is formed in the D shape in appearance formed by the opening 75b, whereby the connection component can be attached to the roller main body 31 (the transport roller 13) without drifting. Moreover, even in the engagement portion 75, in the same manner as the engagement portion 73 shown in
The engagement hole 71 or the engagement portions 73, 74 and 75 can be formed by carrying out the cutting machining or the like with respect to the roller main body 31 which has been obtained by bending the metallic plate 30. However, in that case, an addition of a separate machining process only to form the engagement portion with respect to the roller main body 31 lowers the efficiency regarding the cost or the time. Thus, in the production method of the present invention, before the roller main body 31 is molded by the bending machining (S13), a deploying engagement becoming the engagement portion is formed in the metallic plate 30 by the punching machining (S11), and then, when the roller main body 31 is molded by bending the metallic plate 30, the engagement portion is also concurrently formed.
Specifically, when the approximately narrow rectangular plate-shaped metallic plate 30 as shown in
For example, as shown in
Furthermore, as shown in
In addition, as shown in
Thus, as shown in
Herein, in the examples shown in
The present invention is not limited thereto, but, as shown in
In this manner, when the deploying engagement portions 76d to 76f are formed in the vicinity of the center line in the bending direction, it is possible to more accurately form the engagement portions 73 to 75 to be obtained from the deploying engagement portions 76d to 76f.
As described above, in the production method of the transport roller 13 of the present embodiment, when the small metallic plate 30 is molded by the punching machining from the large metallic plate 60, the deploying engagement portion is also concurrently formed, and when the metallic plate 30 is bent, the engagement portions 71, 73, 74 and 75 are formed from the deploying engagement portion. Thus, there is no need to add a separate machining process only for forming the engagement portion after the roller main body 31 is formed.
Thus, the cost or the time taken by the additional machining process is unnecessary, so that sufficient cost reduction in regard to the transport roller 13 itself is possible, whereby the productivity is also improved. Particularly, since the deploying engagement portion is collectively formed when the large metallic plate is miniaturized, the process can be further simplified.
Moreover, as shown in
Specifically, as shown in
Furthermore, in the roller main body 31 shown in
Moreover, as shown in
Moreover, as shown in
Even in this metallic plate 30C, between the places corresponding to each other in the pair of long sides formed in the shape of a wave line, it is formed such that in a case where one long side becomes a mountain portion, the other long side becomes a valley portion, and, on the contrary, in a case where one long side becomes the valley portion, the other long side becomes the mountain portion. Furthermore, even in the present embodiment, the center line of the joint 84 is formed so as to be parallel to the center axis of the roller main body 31, but the center line of the joint 84 may also be formed so as not to be parallel to the center axis of the roller main body 31, in the same manner as the case of the joint 83.
Furthermore, in regard to the joint, various shapes can be adopted without being limited to the examples shown in
In this manner, when the joints 81 to 84 are formed so as to be overlapped only at one or plurality points without overlapping the segment of line in the line parallel to the center axis of the cylindrical pipe (the roller main body 31), when the transport roller 13 including the roller main body 31 transports the recording paper P in corporation with the driven roller 14, that is when transporting the paper, the transport speed of the recording paper P become regular, whereby the transport fluctuation is more securely prevented.
That is, as shown in
Firstly, as shown in
Furthermore, in regard to the joint of the transport roller 13 (the roller main body 31) formed of a cylindrical hollow pipe, in addition to the above-mentioned example, for example, as shown in
Furthermore, the bent portions 85 may be formed all over the length of the roller main body 31 as shown in
Furthermore, when the bent portions 85 are formed only at both end portions as described above and the center portion between the bent portions 85 is formed as the middle straight line portion 86, it is desirable that the forming area of the high frictional layer 32 shown in
When the bent portions 85 are formed in the joint, so that the bent portions 85 are made to be the fitting portion by the concave and convex portions, it is difficult to fit the concave and convex portions as designed in the bent portions 85 (fitting portions) and bring the front end of the convex portion and the concave portion corresponding thereto into contact with each other (face to face) without a gap therebetween. Thus, when the bent portions 85 are formed all over the length of the roller main body 31, deformation or the distortion is easily generated in the roller main body 31. Therefore, as shown in
In addition, in regard to the joint of the transport roller 13 (the roller main body 31) formed of a cylindrical hollow pipe, in addition to the above-mentioned example, for example, as shown in
Furthermore, in a configuration in which the bent portions 85 are formed only in both end portions as shown in
Furthermore, rectangular wave-shaped bent portions 85 shown in
Moreover, as shown in
Since the joint 36 is formed all over the length of the roller main body 31, when grease, which has been supplied to a bearing (not shown) for rotatably supporting the transport roller 13, is attached to the surface of the transport roller 13, the grease passes and flows on the joint 36 due to a capillary phenomenon. Particularly, the smaller the gap between the end surfaces 34 and 35 in the joint 36 to improve the strength of the transport roller 13 is, the stronger the capillary phenomenon of the grease, whereby the grease easily flows along the joint 36.
Thus, as shown in
The openings 90 are provided on an area except for the area with the high frictional layer 32 formed thereon and the area supported by the bearing, in the joint 36 formed all over the length of the transport roller 13 (the roller main body 31). That is, the high frictional layer 32 is formed at a nearly center portion of the transport roller 13 and the both end sides of the transport roller 13 are supported by the bearing, thus at least two openings 90 are provided on the transport roller 13.
The openings 90 are provided with a view to preventing the grease (a lubricant oil), which has been supplied (applied) to the bearing, from reaching up to the high frictional layer 32 along the joint 36 (the gap between the end surfaces 34 and 35). That is, by providing the openings 90 on a part of the joint 36, the capillary phenomenon of the grease is stopped. Specifically, by providing the opening 90 between the area supported by the bearing and the area with the high frictional layer 32 formed thereon in the joint 36, the grease is prevented from reaching the high frictional layer 32. In addition, by regulating the size (a maximum distance d between the pair of recess portions 91 and 92) of the opening 90, the capillary phenomenon of the grease can be reliably stopped.
In addition, the invention is not limited to a case of forming the recess portions 91 and 92 for forming the openings 90 in each of the pair of end surface 34 and 35 forming the joint 36. That is, as shown in
Next, an operation of the printer 1 relating to the present embodiment will be described based on
As shown in
Herein, as shown in
By the rotation of the transport roller 13, the recording paper P is transported to the top surface of the diamond rib 16 in the platen 15. The ink is ejected from the ejection head 19, which has been moved to a suitable position along with the carriage 20, with respect to the recording paper P mounted on the diamond rib 16, so that information such as letters or images is printed. After the printing, the recording paper P is discharged by the rotation of the paper discharge roller 17 and the paper discharging coarse roller 18 of the paper discharge portion 4.
In this manner, the operation of the printer 1 according to the present embodiment is completed.
Thus, according to the present embodiment, the following effect can be obtained.
According to the present embodiment, there is an effect in that even when the transport roller 13, in which the metallic plate 30 is subjected to bending machining so as to be molded in the form of a cylinder, is used to transport the recording paper P, the holding of the recording paper P by the transport roller 13 is always maintained, whereby the recording paper P can be transported and positioned at a high accuracy.
Although preferable embodiments relating to the present invention have been described with reference to the attached drawings, it is needless to say that the present invention is not limited to the related embodiments. The shapes or the combinations of the respective components shown in the above-mentioned example are an example, and can be variously altered in the scope, which does not depart from the gist of the present invention, on the basis of the design requirements or the like.
Number | Date | Country | Kind |
---|---|---|---|
2009-279833 | Dec 2009 | JP | national |