The present invention relates to a printing device which performs printing by ejecting a liquid by driving a print element and to a print element substrate used for the printing device, and for details, it relates to a print element substrate on which a plurality of the print elements and a drive circuit for driving each of the print elements are provided on the same print element substrate and to a printing device.
The print element substrate used for the printing device which performs printing by ejecting a liquid executes substrate temperature control in response to a recent request for a higher image quality. In the print element substrate, a liquid droplet amount or an ejection speed of the ejected liquid fluctuates depending on the temperature. Thus, in a case where temperature distribution occurs in a substrate temperature, the temperature distribution directly causes unevenness of an image and lowers the image quality.
As a method of correcting the temperature distribution of the substrate, Japanese Patent Laid-Open No. 2014-200972 discloses a method of suppressing temperature unevenness in the substrate by arbitrarily heating a specific area in the substrate. Moreover, there is also disclosed a method of heating a plurality of areas without increasing a connection terminal which can be connected to an outside of the substrate by mounting a driver of a sub-heater in the print element substrate.
However, the driver generates a certain amount of heat while driving the sub-heater. With the constitution in Japanese Patent Laid-Open No. 2014-200972, since the driver is arranged in a concentrated manner on one side end of the print element substrate, a temperature of the one side end of the print element substrate rises by the heat generation during driving of the sub-heater. As a result, there is a concern that temperature unevenness occurs in the substrate and it lowers the image quality.
Thus, the present invention provides a print element substrate and a printing device which can suppress lowering of an image quality.
Thus, the print element substrate of the present invention is a print element substrate which ejects a liquid droplet from an ejection port by foaming the liquid, including: a first heating unit row in which a plurality of first heating units used for foaming the liquid is arrayed; a second heating unit row in which a plurality of second heating units provided in a vicinity of the first heating units and used for heating the print element substrate is arrayed along the first heating unit row; and a driving unit row in which a plurality of driving units for driving the second heating units is arrayed along the first heating unit row.
According to the present invention, the print element substrate and the printing device which can suppress lowering of the image quality can be realized.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
A first embodiment of the present invention will be described below by referring to the drawings.
In the print element substrate 101, a plurality of heating areas (regions) 107 is provided equally on right and left of the substrate, and in each of the heating areas (regions) 107, a temperature detection element (temperature detection unit) 109, the sub-heater 105, and the driver 106 are provided, respectively. The temperature detection element 109 is provided one for one heating area 107 and detects temperature distribution of the print element substrate 101. A positional relationship among the heater 104, the sub-heater 105, and the driver 106 in each of the heating areas 107 is the same in all the heating areas 107. By arranging them as above, heat generation among the plurality of heating areas 107 can be made equal easily, which is more preferable. Note that this is not limiting and it is only necessary that predetermined numbers of the heaters 104, the sub-heaters 105, and the drivers 106 are accommodated in one heating area 107.
In the print element substrate 101 of this embodiment, a row 105a (second heating unit row) of the sub-heaters 105 in which a plurality of the sub-heaters is arrayed is provided along a row 104a (first heating unit row) of the heaters 104 in which the plurality of heaters 104 is arrayed. Moreover, a row 106a (driving unit row) of the drivers 106 in which a plurality of the drivers 106 is arrayed is provided along the row 104a of the heaters 104. As a result, temperature unevenness in the print element substrate 101 can be suppressed by heating the print element substrate 101 by the sub-heaters 105, and further, occurrence of the temperature unevenness involved in arrangement of the drivers 106 can be suppressed.
Note that, in this embodiment, constitution including the temperature detection element in the heating area is described, but this is not limiting, and a temperature of the heating area may be detected from an outside, for example.
As described above, in this embodiment, the heater 104, the sub-heater 105, and the driver 106 are arranged for each heating area 107, and further, the plurality of heating areas 107 is arrayed on the print element substrate. As a result, the print element substrate and the printing device which can suppress lowering of an image quality were realized.
A second embodiment of the present invention will be described below by referring to the drawings. Note that, since a basic constitution of this embodiment is similar to that of the first embodiment, only characteristic constitution will be described below. In the constitution of the first embodiment, the temperature distribution of the print element substrate 101 can be uniformly controlled but in a case of paying attention to an inside of the heating area 107, the temperature distribution is biased in the heating area 107 due to heat generation of the driver 106, and it is likely that the image quality is lowered. Thus, in this embodiment, bias of the temperature distribution in the heating area is suppressed, and further, a size reduction of the sub-heater is also realized.
Note that, in this embodiment, the four pairs (units) of the sub-heaters 205 and the drivers 206 are provided in the heating area 107, but this is not limiting, and it is only necessary that a plurality of units is provided in accordance with a use situation.
Assuming that a calorific value per heating area 107 in the print element substrate 101 in
W=(V^2)/(Rsh1+Ron1) (Formula 1).
Since the print element substrate 201 in
W=4×((V^2)/(4×Rsh1+4×Ron1)) (Formula 2).
From the Formula 2, it is known that such that the resistance value of the sub-heater 205 needs to be designed to be four times that of the sub-heater 105 in
As described above, the heater 104, the sub-heater 105 and the driver 106 are arranged as a plurality of units in each of the heating areas 107, and further, a plurality of the heating areas 107 is arrayed on the print element substrate. As a result, the print element substrate and the printing device which can suppress lowering of the image quality were realized.
A third embodiment of the present invention will be described below by referring to the drawings. Note that, since a basic constitution of this embodiment is similar to that of the first embodiment, only characteristic constitution will be described below.
Sub-heaters 305 are arranged on both sides of the heaters 304 symmetrically to them similarly to the independent supply ports 303. Since the liquid generally has a characteristic that viscosity lowers in a case where a temperature rises, in a case where the liquid is heated by the sub-heaters arranged asymmetrically to the heaters, a balance of viscosity is lost right and left, and a liquid foaming shape becomes asymmetrical. As a result, it is likely that impact position accuracy on the paper surface of the ejected liquid droplet lowers. Thus, in this embodiment, by arranging the sub-heaters 305 symmetrically to the heaters 304 (ejection ports), an influence on the impact accuracy of the liquid droplet even in the case of heating by the sub-heater is reduced.
A Driver 306 is arranged on an outer side of the independent supply port 303, and the sub-heater 305 and the driver 306 are connected by a wiring 311. The wiring 311 has resistance sufficiently lower than those of the sub-heater 305 and the driver 306, and an influence of heat generation is small. The driver 306 may be arranged in a vicinity of the heater 304, but in that case, a distance between the heater 304 and the independent supply port 303 is increased, and there is a concern that supply of the liquid after ejection is delayed. Thus, this embodiment has a constitution with an emphasis on liquid ejection performances by arranging the driver 306 on the outer side of the independent supply port 303. Moreover, the driver 306 is arranged on the outer side of the independent supply port 303, that is, a row 303a of the independent supply ports 303 is provided between a row 304a of the heaters 304 as well as a row 305a of the sub-heaters 305 and a row 306a of the drivers 306. As a result, since a distance between the sub-heater 305 as well as the heater 304 which are heat sources and the driver 306 can be increased, an influence of heating on the driver 306 can be suppressed, and more reliable driving can be performed.
In the print element substrate 301, an end-portion heating area 307 (that is, a heating area arranged on an end portion in a row direction of the heaters 304) provided adjacent to the pad 102 is narrower than other heating areas 308 not adjacent to the pad 102. This is because, since heat is radiated through an electrical connection portion in the vicinity of the pad 102, a temperature distribution gradient becomes larger than in the other areas, and this influence is to be suppressed. Thus, a control area of the end-portion heating area 307 is made small. On the other hand, since a portion far away from the pad 102 has a relatively gentle temperature gradient, the control area of the heating area 308 can be made relatively large. Note that, similarly to the aforementioned embodiment, the four drivers 306 arranged in one end-portion heating area 307 are controlled by the same sub-heater control signal 108. Moreover, eight drivers 306 arranged in one another heating area 308 are controlled by the same sub-heater control signal 108. As described above, the number of the sub-heaters 305 and the number of the drivers 306 included in one end-portion heating area 307 are smaller than the number of the sub-heaters 305 and the number of the drivers 306 included in the other heating areas 308.
Moreover, the heating areas in the print element substrate 301 are made common in an A row and a B row as well as in a C row and a D row in a long side direction. Moreover, the liquid in the same color is supplied to the A row and the B row as well as the C row and the D row, respectively, in this embodiment. Since the liquid ejection driving of the row in the same color is assigned equally to an image in the rows, a temperature-rise profile and heat distribution between the rows in the same color are substantially the same. Thus, a temperature detection element 309 is arranged only on the A row and the C row which are typical in this embodiment, and the heating areas are also made common in the rows in the same color.
By making a heating amount per area equal regardless of a location as described above, a temperature control sequence is simplified. Even in a case where there is a plurality of types of the sub-heaters 305 and calorific values are different depending on the area, temperature control needs to be executed by referring to a plurality of control tables according to the types of the sub-heaters 305. However, since the calorific value in each unit 310 is uniform in the constitution of the present invention, temperature control can be executed by one type of a control table.
A plurality of the temperature detection elements 309 is arranged at the same position with respect to the unit 310. As a result, the temperature detection element 309 is equally influenced by heating of the sub-heater 305 and thus, fluctuation in temperature accuracy due to the position of the temperature detection element 309 can be suppressed.
As described above, the independent supply ports and the sub-heaters are arranged on both sides of the heater symmetrically to the heater, and the heaters 104, the sub-heaters 105, and the drivers 106 are arranged for each of the heating areas 107. Further, while the plurality of heating areas 107 is arrayed on the print element substrate, the number of units which can be controlled by the same sub-heater control signal is reduced in the vicinity of the connection terminals. As a result, the print element substrate and the printing device which can suppress lowering of the image quality were realized.
Note that this embodiment has a constitution in which the rows of the independent supply ports 303 are arranged on the both sides of the heaters 304 (heater row), but the row of the independent supply ports 303 on one side of the row of the heaters 304 may be made a row of discharge ports for discharging the liquid. That is, it is only necessary to have a constitute in which opening rows through which the liquid passes such as the rows of the supply ports 303 and the row of the discharge ports are arranged on the both sides of the row of the heaters 304. As a result, the liquid can be circulated through the supply port 303, the heater 304, and the discharge port.
A fourth embodiment of the present invention will be described below by referring to the drawings. Note that, since a basic constitution of this embodiment is similar to that of the first embodiment, only characteristic constitution will be described below.
The constitution of the print element substrate in this embodiment can reduce a distance between the independent supply port 303 and the heater 304 more than the constitution in
As described above, the independent supply ports are arranged on the both sides of the heaters symmetrically to them, and the sub-heaters 405 are provided so as to pass between the independent supply ports 303 in the array direction of the heaters 304. Further, while the heater 104, the sub-heater 105, and the driver 106 are arranged in each of the heating areas 107, and the plurality of heating areas 107 is arrayed on the print element substrate, the number of units capable of being controlled by the same sub-heater control signal is reduced in the vicinity of the connection terminal. As a result, the print element substrate and the printing device which can suppress lowering of the image quality were realized.
Examples of an inkjet print head on which the print element substrate of the aforementioned embodiment is mounted and the printing device using this inkjet print head will be described.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Applications No. 2016-107638, filed May 30, 2016, and No. 2017-088816, filed Apr. 27, 2017, which are hereby incorporated by reference wherein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2016-107638 | May 2016 | JP | national |
2017-088816 | Apr 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
9039126 | Hirayama et al. | May 2015 | B2 |
9597893 | Kudo et al. | Mar 2017 | B2 |
20140300660 | Hirayama | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2014-200972 | Oct 2014 | JP |
Entry |
---|
U.S. Appl. No. 15/590,489, filed May 9, 2017. |
Number | Date | Country | |
---|---|---|---|
20170341382 A1 | Nov 2017 | US |