The present invention relates to mainly a print element substrate.
Among inkjet printing apparatuses, there is a thermal inkjet printing apparatus that discharges ink from a nozzle using heat energy generated by a heater (electrothermal transducer). Japanese Patent Laid-Open No. 2019-72999 discloses a structure of a thermal inkjet printing apparatus in which a conductive plug is provided in the terminal portion of a temperature sensor provided immediately below a heater, and the temperature sensor is connected to a wiring layer in a lower layer.
The temperature sensor is required to detect a temperature change based on the discharge mode of ink rather than the driving mode of the heater. Therefore, the inkjet printing apparatus in Japanese Patent Laid-Open No. 2019-72999 has room for structural improvement.
The present invention has as its exemplary object to implement, with a relatively simple structure, appropriate detection of a temperature change based on the discharge mode of ink after a heater is driven.
One of the aspects of the present invention provides a print element substrate, comprising a base, a heater provided on the base and configured to generate heat used to discharge ink, a flow path member, which forms an ink flow path, configured to form, together with the base, a bubbling chamber in which the ink is bubbled by the heat of the heater provided in a bottom surface of the bubbling chamber, and a temperature sensor capable of detecting a temperature of the bubbling chamber, the temperature sensor being formed of the same material as the heater and provided in the same layer as the heater on the base.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Hereinafter, embodiments will be described in detail with reference to the attached drawings. Note, the following embodiments are not intended to limit the scope of the claimed invention. Multiple features are described in the embodiments, but limitation is not made to an invention that requires all such features, and multiple such features may be combined as appropriate. Furthermore, in the attached drawings, the same reference numerals are given to the same or similar configurations, and redundant description thereof is omitted.
Hereinafter, embodiments will be described by exemplarily showing print element substrates each included in a printhead of an inkjet printing apparatus. However, the material to be discharged is not limited to ink but may be another liquid. That is, the inkjet printing apparatus to be exemplarily shown in each of the following embodiments is an example of a liquid discharge apparatus, the printhead is an example of a liquid discharge head, and the print element substrate is an example of a head substrate.
As shown in
For the sake of descriptive convenience, “upper/lower” described in this specification is defined to correspond to upper/lower in
The print element substrate 1 includes a heater 101 and a pair of temperature sensors 102 and 112. The heater 101 is an electrothermal transducer that generates heat when driven (energized), and provided below the discharge port 111 (so as to overlap the discharge port 111 in a planar view). For the heater 101, for example, a material such as TaSiN, which is relatively easy to form a high electric resistance, is used. The heater 101 is formed of a thin film so as to typically have a rectangular shape in a planar view.
Note that in this embodiment, the heater 101 has an oblong outer shape in a planar view, that is, has a long side as one side and a short side as the other side. Further, in this embodiment, as can be seen from
The temperature sensors 102 and 112 are arranged so as to be close to the central portion of the heater 101 on the long-side side in a planar view, and provided as thin films in the same layer as the heater 101. That is, the heater 101 and the temperature sensors 102 and 112 (or the thin films constituting them) are formed almost simultaneously by a predetermined step using a known semiconductor manufacturing process, for example, a deposition step, a patterning step, or the like. Accordingly, they are formed of the same material.
The protective film 201 is provided so as to cover the heater 101 and the temperature sensors 102 and 112 and insulate them from each other. For example, an insulating member of SiN or the like is used for the protective film 201.
The anti-cavitation film 107 is arranged on the protective film 201 and exposed to the ink flow path 108. The anti-cavitation film 107 is provided between the wall portion of the orifice plate 212 and the protective film 201 in the widthwise direction of the ink flow path 108 (see
As can be seen from
A portion of the ink flow path 108 located above the heater 101 and its peripheral portion function as a bubbling chamber for bubbling the ink by receiving the heat of the heater 101. The temperature sensors 102 and 112 can detect the temperature of the bubbling chamber. The bubbling chamber can be specified, for example, as a portion of the ink flow path 108 that overlaps the anti-cavitation film 107 in a planar view.
Note that the structure in which the pair of temperature sensors 102 and 112 are arranged is employed in this embodiment, but one of them may be omitted. For example, as shown in
The print element substrate 1 is formed by providing a plurality of wiring layers (to be also referred to as metal layers, conductive layers, or the like) in an insulating member 202 on a substrate 211. The insulating member 202 is formed by stacking a plurality of interlayer insulating films, and each of the wiring layers described above can be provided between the interlayer insulating films. A semiconductor material such as silicon can be used for the substrate 211, and an insulating material such as silicon oxide can be used for the insulating member 202.
The heater 101 and the temperature sensors 102 and 112 described above are electrically connected to each other via wiring patterns (to be also referred to as line patterns, or simply as patterns or the like) and conductive plugs (to be also referred to contact plugs, visas, or the like) provided in the plurality of wiring layers described above, thereby forming a circuit capable of implementing a print function. In this embodiment, a total of three wiring layers are provided: a first layer closest to the substrate 211, a second layer above the first layer, and a third layer provided on the insulating member 202 as the uppermost layer.
The heater 101 is connected to a wiring pattern 203a in the second layer via a conductive plug 103 in one end portion on the short-side side, and connected to a wiring pattern 203b in the second layer via a conductive plug 104 in the other end portion. Note that the wiring pattern 203a is grounded via a switch element 303 (see
As shown in
Similar to the temperature sensor 102, the temperature sensor 112 is connected to a predetermined wiring pattern via conductive plugs 113 and 114 provided in both end portions in the long-side direction. For example, as shown in
A heat dissipation pattern 207 is arranged in the second layer below the heater 101. The pattern 207 is connected to a heat dissipation pattern 208 in the first layer via a plug 209, and the pattern 208 is connected to the substrate 211 via a plug 210. According to such the arrangement, if the heater 101 is driven to generate heat and then the driving is suppressed, the heat is quickly dissipated to the substrate 211.
Note that the patterns 207 and 208 may be formed in the same manner as the pattern 203a or the like, and the plugs 209 and 210 may be formed in the same manner as the plug 205 or the like. Accordingly, for example, a material such as copper, which has a relatively low electric resistance and a relatively large thermal conductivity, may be used for them.
A voltage source 301 is a constant voltage source that supplies a constant voltage VH to the heater 101 to drive the heater 101. If the drive signal HT reaches an ON level (which can be also referred to as High level, activation level, or the like), the switch element 303 is set in a conductive state, and the voltage VH is applied to the heater 101 via the conductive plug 103 (see
In this manner, the voltage VH is applied to the heater 101 in the form of a rectangle pulse in accordance with the ON/OFF level of the drive signal HT, and the heater 101 is driven. Although the details will be described later, this causes an ink droplet 501 (see
A current source 302 is a constant current source used to supply a constant current Iref to the temperature sensor 102. If the control signal SE reaches an ON level (which can be also referred to as High level, activation level, or the like), a switch element 304 is set in a conductive state, and the current Iref is supplied to the temperature sensor 102 via the conductive plug 105 (see
The temperature to be detected by the temperature sensor 102 rises as the heater 101 is driven, and falls by heat dissipation via the heat dissipation pattern 207 and the like, heat dissipation to the ink flow path 108, and the like.
Here, letting T be the temperature detected by the temperature sensor 102, RS be the electric resistance value of the temperature sensor, T0 be the normal temperature, RS0 be the electric resistance value of the temperature sensor at the temperature T0, and TCR be a temperature coefficient of resistance, equation (1) is obtained:
RS=RS0×{1+TCR×(T−T0)} (1)
When the current Iref is supplied to the temperature sensor 102, a potential difference VS is generated between the both end portions of the temperature sensor 102. This potential difference VS is expressed by equation (2):
The above-described potential difference VS is input to the differential amplifier 307, and the differential amplifier 307 outputs a voltage Vdif corresponding to the above-described potential difference VS. As an offset voltage which enables implementation of a desired circuit operation, a voltage Vref is applied to the differential amplifier 307. Letting Gdif be the amplification factor of the differential amplifier 307, the output voltage Vdif of the differential amplifier 307 is expressed by equation (3):
Vdif=Vref−Gdif×VS (3)
Each of
As shown in
In this embodiment (in each of the cases of the waveforms 402 to 404), the detection accuracy of the temperature sensor 102 can be improved by providing the temperature sensor 102 on the side of the heater 101 to be close to the heater 101. Further, by providing the temperature sensor 102 so as to be adjacent to the central portion of the heater 101 on the long-side side, the heat easily propagates from the heater 101 to the temperature sensor 102, and the temperature sensor 102 can be provided in an elongated shape. This enables further improvement of the detection accuracy of the temperature sensor 102.
Further, in this embodiment, as shown in
On the other hand, after the ink droplet 501 is discharged from the discharge port 111 along with the driving of the heater 101 (for example, after about 2 μs), the anti-cavitation film 107 is cooled by the return ink droplet 502 partially returning into the ink flow path 108.
Here, as indicated by each feature point K in
Thus, in this embodiment, the thermal resistance between the temperature sensor 102 and the return ink droplet 502 is lower than in the reference example, and the temperature sensor 102 is easily cooled by the return ink droplet 502. Therefore, according to this embodiment, it can be said that the temperature sensor 102 can appropriately detect the return ink droplet 502. In other words, in this embodiment, the temperature sensor 102 is more suitable for detecting a temperature change in the bubbling chamber of the ink flow path 108 due to the return ink droplet 502 than for detecting a temperature change of the heater 101.
Here, as shown in
More specifically, the closer the return ink droplet 502 is to the temperature sensor 102, the more sharply the detected temperature after the feature point K drops, and the farther the return ink droplet 502 is from the temperature sensor 102, the more moderately the detected temperature after the feature point K drops. Accordingly, in the case shown in
As shown in
Further, according to this embodiment, it is also possible to calculate the discharge direction of the ink droplet 501 based on the drop modes of the detected temperatures of the temperature sensors 102 and 112 (that is, the difference between the change amounts of the detected temperatures after the feature point K).
The heater 101 and the temperature sensors 102 and 112 are arranged in the same layer. In this embodiment, they are arranged on the upper surface of the insulating member 202 and in the third layer closest to the ink flow path 108. Therefore, it is possible to appropriately implement both heating of the ink by the heater 101 and detection of a temperature change due to the return ink droplet 502 by the temperature sensors 102 and 112.
Each of
In the example shown in
In the example shown in
Note that in the example shown in
In the first embodiment described above, the structure has been exemplified in which the pair of temperature sensors 102 and 112 are respectively arranged on both sides of the heater 101 in the short-side direction so as to be adjacent to the heater 101. However, the present invention is not limited to this mode.
Note that the temperature sensor 701 is connected to a predetermined wiring pattern via conductive plugs 703 and 704 provided in both end portions, and the temperature sensor 702 is connected to a predetermined wiring pattern via conductive plugs 705 and 706 provided in both end portions.
According to the arrangement (see
Further, according to this embodiment, it is also possible to calculate the discharge direction of the ink droplet 501 based on the drop modes of the detected temperatures of the temperature sensors 701 and 702 in addition to the temperature sensors 102 and 112, so that the calculation can be performed with higher accuracy than in the first embodiment.
Even with the arrangement as described above, the effect similar to that in the second embodiment described above can be obtained. That is, if a feature point K (see
In this embodiment, an opening is provided in the central portion of a heater (to be referred to as a heater 901 for discrimination) in a planar view, and a temperature sensor (to be referred to as a temperature sensor 902 for discrimination) is arranged in the opening. Similar to the heater 101, the heater 901 is connected to predetermined wiring patterns via conductive plugs 103 and 104 provided in both end portions. The temperature sensor 902 is connected to predetermined wiring patterns via conductive plugs 903 and 904 provided in both end portions.
So as to correspond to the opening provided such that the temperature sensor 902 can be arranged in the central portion of the heater 901, an opening may be provided in a heat dissipation pattern 207 such that the pattern 207 is electrically separated from wiring patterns 203c and 203d (see
Similar to the heat dissipation pattern 207, an opening is provided in a heat dissipation pattern 208 such that the pattern 208 is electrically separated from wiring patterns 204a and 204b. That is, the pattern 208 is arranged so as to sandwich the wiring patterns 204a and 204b.
According to this embodiment, by providing an opening in the center portion of the heater 901 and providing the temperature sensor 902 in the opening, the temperature sensor 902 is surrounded by the heater 901 in its whole periphery. Therefore, the heat propagation efficiency from the heater 901 to the temperature sensor 902 is improved, and the detection accuracy of the temperature sensor 902 can be further improved.
The heater 1101 is connected to predetermined wiring patterns via conductive plugs 1104 and 1105 provided in both end portions. The heater 1102 is connected to predetermined wiring patterns via conductive plugs 1106 and 1107 provided in both end portions. The temperature sensor 1103 is connected to predetermined wiring patterns via conductive plugs 1108 and 1109 provided in both end portions.
In this embodiment, the heaters 1101 and 1102 and the temperature sensor 1103 are extended along one direction. Therefore, as in the first embodiment described above (see
According to this embodiment, the heaters 1101 and 1102 are respectively arranged on both sides of the temperature sensor 1103. Therefore, the heat propagation efficiency from the heaters 1101 and 1102 to the temperature sensor 1103 is improved, and the detection accuracy of the temperature sensor 1103 can be further improved.
In this embodiment, the print element substrate 1 includes a pair of heaters (to be referred to as heaters 1201 and 1202 for discrimination) and a temperature sensor (to be referred to as a temperature sensor 1203 for discrimination). The heaters 1201 and 1202 are juxtaposed and electrically connected in series in the extending direction of an ink flow path 108 (the direction in which ink flows), and they are driven almost simultaneously when an ink droplet 501 is discharged. The temperature sensor 1203 is arranged between the heaters 1201 and 1202, and extended in the widthwise direction of the ink flow path 108.
The heater 1201 is connected to predetermined wiring patterns via conductive plugs 1204 and 1205 provided in both end portions in the extending direction of the ink flow path 108. The heater 1202 is connected to predetermined wiring patterns via conductive plugs 1206 and 1207 provided in both end portions in the extending direction of the ink flow path 108. The heaters 1201 and 1202 are electrically connected in series via a wiring pattern 1301 in a second layer. The wiring pattern 1301 is connected to the heater 1201 via the conductive plug 1205 in one end portion, and connected to the heater 1202 via the conductive plug 1206 in the other end portion. The temperature sensor 1203 is connected to predetermined wiring patterns via conductive plugs 1208 and 1209 provided in both end portions in the widthwise direction of the ink flow path 108.
Since the wiring pattern 1301 is arranged below the temperature sensor 1203, a pair of heat dissipation patterns 207 respectively corresponding to the heaters 1201 and 1202 are arranged so as to be electrically separated from the wiring pattern 1301. That is, as shown in
According to this embodiment, the heat is propagated from both of the pair of heaters 1201 and 1202 to the temperature sensor 1203. Therefore, the heat propagation efficiency from the heaters 1201 and 1202 to the temperature sensor 1203 is improved and, as in the fifth embodiment described above, the detection accuracy of the temperature sensor 1203 can be further improved.
In the above description, the printing apparatus using an inkjet printing method has been taken as an example and described, but the printing method is not limited to the above-described mode. Further, the printing apparatus may be a single-function printer having only a printing function, or a multifunction printer having a plurality of functions such as a printing function, a fax function, and a scanner function. Furthermore, the printing apparatus may be, for example, a manufacturing apparatus for manufacturing a color filter, an electronic device, an optical device, a microstructure, or the like by a predetermined printing method.
The term “printing” described above should be interpreted in a broad sense. Accordingly, the mode of “printing” does not matter whether the object formed on a print medium is significant information such as characters and graphics, and also does not matter whether the object is visualized so that a human can visually perceive it.
Further, “printing medium” described above should be interpreted in a broad sense, similar to “printing” described above. Accordingly, the concept of “print medium” can include, in addition to paper which is generally used, any member that can accept ink, such as cloth, a plastic film, a metal plate, glass, ceramics, a resin, wood, leather, and the like.
Furthermore, “ink” should be interpreted in a broad sense, similar to “printing” described above. Accordingly, the concept of “ink” can include, in addition to a liquid that forms an image, a figure, a pattern, or the like by being applied onto a print medium, additional liquids that can be used for processing a print medium, processing ink (for example, coagulation or insolubilization of colorants in ink applied onto a print medium), or the like.
The present invention is not limited to the above embodiments and various changes and modifications can be made within the spirit and scope of the present invention. Therefore, to apprise the public of the scope of the present invention, the following claims are made.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2020-094906, filed on May 29, 2020, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2020-094906 | May 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5706041 | Kubby | Jan 1998 | A |
6644774 | Burger | Nov 2003 | B1 |
9919519 | Ge | Mar 2018 | B2 |
10940640 | Taniguchi et al. | Mar 2021 | B2 |
20030001927 | Oda et al. | Jan 2003 | A1 |
20060081239 | Alley | Apr 2006 | A1 |
20060221136 | Silverbrook et al. | Oct 2006 | A1 |
20110211000 | Aoki | Sep 2011 | A1 |
20140300657 | Ike | Oct 2014 | A1 |
20160347054 | Ge | Dec 2016 | A1 |
20180037029 | Hirayama | Feb 2018 | A1 |
20180162049 | Taniguchi et al. | Jun 2018 | A1 |
20180169941 | Taniguchi et al. | Jun 2018 | A1 |
20190105921 | Kanno et al. | Apr 2019 | A1 |
20190299600 | Nomura | Oct 2019 | A1 |
20200016896 | Oohashi | Jan 2020 | A1 |
20230101931 | Nomura | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
4203294 | Sep 1997 | DE |
2009-196265 | Sep 2009 | JP |
2017-1393 | Jan 2017 | JP |
2017-501063 | Jan 2017 | JP |
2019-72999 | May 2019 | JP |
Entry |
---|
Office Action dated Jun. 9, 2023 in counterpart application CN 202110581479.2 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20210370670 A1 | Dec 2021 | US |