The invention relates generally to the field of printing and more particularly to improving the readability of printed matter.
Printed matter needs to be printed with a high level of quality to ensure readability by automation equipment, especially when old technology readers require very high print contrast ratios to ensure readability. The problem is particularly evident when barcodes are automatically read by postal automation equipment and other barcode readers.
Barcodes have been used in a wide variety of applications as a source for information. Typically barcodes are used at a point-of-sale terminal in merchandising for pricing and inventory control. Barcodes are also used in controlling personnel access systems, mailing systems, and in manufacturing for work-in process and inventory control systems, etc. The barcodes themselves represent numbers or alphanumeric characters by series of adjacent stripes of various widths, (i.e. a width modulated universal product code), heights (i.e. a height modulated POSTNET barcode), or position (2D barcode).
An ordinary barcode is a set of binary numbers. It typically consists of black bars and white spaces. A wide black bar space may signify a one and a thin black bar or space may signify a zero. The binary numbers stand for decimal numbers or letters. There are several different kinds of barcodes. In each one, a number, letter or other character is formed by a pre-established number of bars and spaces.
Width modulated barcodes are “vertically redundant”, meaning that the same information is repeated vertically. They are in fact a one-dimensional code. The heights of the bars can be truncated without any lose of information. A two-dimensional code stores information along the height as well as the length of the symbol. Thus, in the same area more information may be stored in a two dimensional barcode than in a one dimensional barcode.
Current technology printers may leave small unintended voids between pixels which prevent achievement of the highest print contrast and uniform coverage of which the ink dyes or pigments are theoretically capable of. Such unintended voids are caused by the nature of ink jet printing of placing small drops (1-50 pL) on rough surface of paper with “peaks and valleys”. The ink jet drops do not reach the paper surface in a uniform way and therefore cause to “graininess” as defined by the Standard ISO 13660, herein incorporated by reference, or non uniform print coverage especially on plain paper. Therefore the result is a degradation of the print quality of printed images. In comparison the mass thermal transfer printing achieves a uniform print coverage with the melt wax bridging the irregularities of the paper surface.
These characteristics affect the uniformity of the modules printed in the 2 D bar codes which might be interpreted as background by scanners. Barcodes, are also very sensitive to ink in unwanted locations—the line of contact and the white spaces in barcodes must be preserved and readability can be severely impacted if ink is allowed to bleed into regions which are intended to be blank (print growth).
One of the problems of the prior art is that it is often difficult to automatically read printed information.
Another problem of the prior art is that s often difficult to automatically read printed information that has a low print contrast ratio which is due to non optimal print coverage.
This invention overcomes the disadvantages of the prior art by providing a method to improve barcode print image quality by printing the bar code ink from one printhead or trench and then applying the solvent from a second printhead on the first printed image in order to improve the printed area uniformity. The conditions of the 2 inks to be printed are the following: the first ink has to have a low percentage of colorant soluble in the post printed solvent and the solvent has to be able to wet the first print efficiently during the printing process. The invention utilizes a print head to cause localized improvement by applying a fluid that acts on prints generated by another print head.
The invention also prevents bleeding into unwanted areas where it could lower the quality of the printed material by utilizing the localized (targeted) print capabilities of print heads.
Referring now to the drawings in detail, and more particularly to
The present invention recognizes that parameters may be set to define the number of pixels to trim (possibly different values in different axes or different values for the lead and trailing sides of print areas) from the outer perimeter of a rectangle to ensure that the facilitator induced enhanced coverage of individual pixels 66 does not cause unintended bleed beyond the boundaries of printed rectangles 64.
A further embodiment of this invention recognizes that when large solid rectangles (70) are printed on paper, there may be a central area (rectangle 72) in which ink tends to pool because the paper fibers are saturated with ink. Therefore, a second parameter may be defined which further limits the maximum solid rectangular area (71) over which facilitator will be applied. In
It would be obvious to one skilled in the art that controller 200 may be used to control various print heads that eject colored inks so that bar code 60 may be a bar code that has multiple colors. Bidirectional print heads may utilize dual facilitator heads (either side) or ink which remain unfixed long enough for the facilitator to be effective when deposited after the ink is printed.
The extraordinary diversity of ink vendors, ink formulations, printers, and paper types make it impractical to define specific ink formulations for use in the present invention. It is, however, possible to provide specific guidelines for their determination. First, each ink has a material, solvent, or fluid (“facilitator”) which facilitates the enhanced coverage of ink into nearby areas. If this facilitator is applied when the ink is printed as described in this application then the ink will be better able to spread into the unwanted voids 67 and enhance coverage.
The application describes the concept of taking the area to be printed and pixel trimming the dimensions of that area for application of the facilitator to prevent unintended bleed of the ink. A straightforward calibration process may be utilized to determine the desired facilitator load and pixel trimming of the print area for facilitator application. A monochrome black dot pattern, as presented in the application figures, may be printed and the unintended voids between pixels observed as well as the quality of test barcodes. Test patterns (A-Z) allow for a progressive series of dot or barcode tests in which the quantity of facilitator and number of pixels trimmed is varied:
The control test cases “A, F, K, P, and V” correspond to the instances in which no facilitator is applied (and therefore the trimming of the pixels is moot). At the opposite extreme, test cases in the final column represent instances in which the maximum facilitator is applied. Comparison of case “E” (no pixels trimmed) to cases with progressively greater numbers of pixels trimmed (“J, O, U, Z”) will reveal the point at which the enhanced coverage extends beyond the boundaries is the intended pattern and therefore is causing unwanted image distortion. This test pattern would easily fit on a single sheet of paper and therefore the test print is accomplished quickly. Selection of the “best” pattern in which black and white pixels are of equal size could be done by visual inspection (as alignment patterns are done on many printers today) or through automation. Test cases may also be included to identify the effects of paper grain and allow setting of different pixel trimming parameters in the horizontal and vertical axes. An automated solution would be to utilize a barcode reader/verifier to read each of the printed barcodes and identify the point at which the read rates and quality are highest.
Since print media differ considerably in porosity (capacity for unintended ink bleed), different settings would be expected to be required for blotting paper and plastic transparency film. Vendors might choose to pretest and calibrate their inks (they know what inks they sell with particular printer models) and incorporate the settings into the control systems or printer drivers for their printers. Printers that sense the paper media could then utilize the media types with the corresponding facilitator strength and pixel trimming parameters. Since paper grain is typically aligned with the long axis of the paper, printers could adapt pixel trimming algorithms accordingly based upon the landscape (horizontal) or portrait (vertical) orientation of the paper.
Some print heads may have the ability to delivery varying quantities of ink (underdrive or overdrive) resulting in reduced or enlarged pixels as described in other applications by Check and Sansone in U.S. Pat. No. 4,386,272 assigned to Pitney Bowes Inc. In such instances, the quantities of black ink delivered within regions 68 or 71 may be deliberately increased to produce enlarged pixels and the volumes of ink delivered to pixels within regions 72 may be reduced to produce reduced pixels. Dithering of pixels (deliberate omissions of pixels within a large region to reduce the overall intensity of the print while maintaining image integrity) may also be used to reduce unwanted pooling of ink due to saturation in large print areas 71.
The above specification describes a new and improved method for improving the readability of printed matter. It has been described with reference to black ink on white paper. It is realized that the above description may indicate to those skilled in the art additional ways in which the principles of this invention may be used without departing from the spirit including the use of any ink colors with the corresponding facilitators to allow them to enhance coverage and provide a better quality of print and the use of bidirectional printers. It is, therefore, intended that this invention be limited only by the scope of the appended claims.