Print head for the application of a coating agent on a component

Information

  • Patent Grant
  • 11167308
  • Patent Number
    11,167,308
  • Date Filed
    Friday, December 1, 2017
    6 years ago
  • Date Issued
    Tuesday, November 9, 2021
    2 years ago
Abstract
The disclosure concerns a printhead for applying a coating agent to a component, in particular for applying a paint to a motor vehicle body component, having at least one outlet opening for dispensing the coating agent, a coating agent supply for supplying the coating agent to the outlet opening, a movable valve element, the valve element in the closed position closes the outlet opening, whereas the valve element in the open position opens the outlet opening, and with a valve actuator for moving the valve element between the opening position and the closed position. The disclosure additionally provides for a flexible membrane which separates the valve actuator from the coating agent supply, the actuator side of the membrane facing the valve actuator and the coating agent side of the membrane being exposed to the coating agent in the coating agent supply.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage of, and claims priority to, Patent Cooperation Treaty Application No. PCT/EP2017/081101, filed on Dec. 1, 2017, which application claims priority to German Application No. DE 10 2016 014 946.9, filed on Dec. 14, 2016, which applications are hereby incorporated herein by reference in their entireties.


BACKGROUND

The disclosure concerns a printhead for the application of a coating agent to a component, in particular for the application of a paint to a vehicle body component.


For the serial painting of vehicle body components, rotary atomizers are usually used as application devices, but these have the disadvantage of limited application efficiency, i.e. only part of the applied paint deposits on the components to be coated, while the rest of the applied paint has to be disposed of as so-called overspray.


A newer development line, on the other hand, provides for so-called printheads as application devices, as known for example from DE 10 2013 002 412 A1, U.S. Pat. No. 9,108,424 B2 and DE 10 2010 019 612 A1. In contrast to the known rotary atomizers, such printheads do not emit a spray of the paint to be applied, but rather a narrowly confined paint jet, which is deposited almost completely on the component to be laquered, so that virtually no overspray occurs.


With the well-known printheads, the coating agent to be applied (e.g. paint) is ejected through a nozzle, whereby the nozzle can be closed or opened by a sliding valve needle. The mechanical drive of the valve needle can be done by a magnetic actuator, which moves the valve needle and thus either closes or releases the nozzle.


A disadvantage of these well-known printheads is the fact that the valve actuator, including the valve needle, is exposed to the coating agent to be applied. On the one hand, this can lead to coating deposits on the valve actuator, which in the worst case can lead to malfunctions. On the other hand, this is also problematic in case of a colour change if different types of coating agents are to be applied one after the other, as the conventional design makes the rinsing of the printhead more difficult.


The technical background of the disclosure can also be found in DE 10 2014 012 705 A1 and DE 10 2007 037 663 A1.


The disclosure is therefore based on the task of creating a correspondingly improved printhead.





BRIEF DSESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic representation of a printhead with several nozzles, each with a valve actuator and a continuous common membrane,



FIG. 2 is a modification of FIG. 1, wherein a separate membrane is associated with each valve actuator,



FIG. 3 shows a schematic representation of a printhead in accordance with the disclosure, whereby the membrane also fulfils the function of a return spring,



FIG. 4 is a modification of FIG. 3, where the armature does not form a valve needle and the membrane contains magnetic particles,



FIG. 5 shows a modification in which the valve actuator is arranged completely on the actuator side of the membrane,



FIG. 6 shows a modification in which a part of the valve actuator is also arranged on the coating agent side,



FIG. 7 a modification with an additional nipple to seal the outlet opening,



FIG. 8 a modification with a hydraulic actuator.



FIG. 9 another modification.





DETAILED DESCRIPTION

The printhead according to the disclosure is used to apply a coating agent (e.g. paint, adhesive, primer, sealant, etc.) to a component. Preferably, the printhead is designed in such a way that it can apply a coating agent to a vehicle body component. The term “printhead” used in the context of the disclosure is to be generally understood and serves essentially only to distinguish it from conventional atomizers which do not emit a spatially sharply defined jet of coating agent, but rather a spray of the coating agent. Such printheads are already known from the state of the art and therefore do not have to be described further. However, reference is only made to the above-mentioned publications U.S. Pat. No. 9,108,424 B2, DE 10 2010 019 612 A1 and DE 10 2013 002 412 A1, which in principle describe such printheads.


The printhead according to the disclosure has at least one outlet opening for dispensing the coating agent. In one example, this outlet opening is the nozzle opening of the printhead through which a coating agent jet of the coating agent is dispensed. However, it is also possible that the outlet opening may be another outlet opening upstream of the actual nozzle opening.


In addition, in accordance with the state of the art, the printhead according to the disclosure has a coating agent supply to supply the coating agent to be applied to the outlet opening.


Further, in accordance with the state of the art, the printhead according to the disclosure incorporates a movable valve element (e.g., a valve needle) movable between an open position and a closed position, the valve element closing the outlet opening in the closed position, while the movable valve element opens the outlet opening in the open position.


Furthermore, in accordance with the state of the art, the printhead according to the disclosure includes a valve actuator for moving the valve element between the open position and the closed position. With regard to the constructive design of the valve actuator, the disclosure offers various possibilities which are described in detail below. For example, the valve actuator can be a magnetic actuator, a fluid actuator (pneumatic or hydraulic) or a piezo actuator, to name just a few examples.


In contrast to the conventional printheads described at the beginning, the printhead according to the disclosure now features a flexible membrane that separates the valve actuator from the coating agent supply, with the membrane facing the valve actuator on its actuator side and exposed to the coating agent in the coating agent supply on its coating agent side.


The coating agent to be applied thus only touches the coating agent side of the flexible membrane in the coating agent supply, not the valve actuator, which is thus protected from the effect of the coating agent. With the printhead according to the disclosure, the valve actuator is separated from the media-carrying area, which is advantageous.


This separation prevents deposits in the drive area (e.g. on valve needles, pistons, in the inner tube of a coil, etc.). This maintains the function of the printhead and extends cleaning, flushing and maintenance intervals.


A further advantage is the considerably improved rinsing capability of the printhead, because the flexible membrane on its coating agent side offers hardly any starting points for coating agent deposits. This also has the advantage of a faster colour change, as the rinsing process is shorter.


In addition, two-component or multi-component coating paints can also be applied with the printhead according to the disclosure.


In addition, process reliability is increased and leakage safety improved.


Finally, lower actuating power is required to move the moving valve element.


In an example, the printhead has not only a single outlet opening with a single valve element, but several outlet openings, each with a movable valve element and a valve actuator.


In one variant of this example, each valve actuator is assigned a flexible membrane to separate the valve actuator.


In another variant of this example, a common, continuous, flexible membrane is provided, which separates the valve actuators from the coating agent supply. This continuous membrane can lie against the upper channel wall at individual points (e.g. between each valve actuator), be fastened or be continuously spaced from the upper channel wall.


It should also be noted that the printhead may have a return spring (e.g. coil spring) to push the flexible membrane into its rest position, whereby the rest position is preferably the closed position in which the movable valve element closes the outlet opening.


In addition to this return spring or instead of the return spring, the membrane can be elastically resilient, whereby the membrane then additionally fulfils the function of a return spring.


The movable valve element (e.g. valve needle) can therefore be pushed into the rest position by the return spring as well as by the elastic membrane.


Alternatively, it is possible to do without the usual return spring and then only the elastic membrane takes over the function of the return spring.


It should also be noted in this context that the rest position is preferably the closed position in which the movable valve element closes the outlet opening. Alternatively, it is also possible that the rest position is the open position in which the moving valve element releases the outlet opening. The flexible membrane can therefore press the moving valve element into either the closed or the open position due to its spring force, depending on the design of the printhead.


The disclosure also offers the possibility that the membrane itself may be magnetic or magnetizable or partially magnetic or magnetizable, or that it may be magnetic or magnetizable in the action area of the magnetic drive, for example by elements connected to the membrane and driven by a magnetic drive that either attracts or repels the magnetic membrane depending on its polarity. The magnetic effect of the membrane can, for example, be achieved by the membrane containing magnetic particles to make the membrane magnetic.


It has been briefly mentioned above that the printhead can have a sliding valve needle to move the movable valve element between the open position and the closed position. The valve needle can form a movable armature in a solenoid actuator.


In an example of the disclosure, this valve needle is firmly connected to the membrane and the valve element, so that the displacement of the valve needle inevitably leads to a corresponding deflection of the membrane and the valve element.


It should also be mentioned that the valve element and/or the valve needle may be located completely on the actuator side of the membrane and are separated from the coating agent supply by the membrane. Here the membrane can then be completely smooth on the coating agent side and therefore does not form any starting points for coating agent deposits.


Alternatively, it is also possible that the valve element and/or the valve needle are arranged with one part on the coating agent side and with another part on the actuator side with respect to the membrane, so that the membrane separates the two parts from each other. This variant of the disclosure may achieve a larger flow cross-section for the coating agent.


In addition, the valve element may have a nipple on the coating agent side of the membrane for closing or releasing the outlet opening, whereby this nipple then releases or closes the outlet opening.


In an example, this nipple is integrally molded to the membrane on the outlet side of the membrane.


It should also be mentioned in this context that the nipple may be shaped concentrically and congruently to the outlet opening in order to be able to close the outlet opening sealingly.


In a variant of the disclosure, the valve actuator is a fluid actuator that applies an adjustable fluid pressure to a flexible actuator membrane in order to deflect the actuator membrane and thus move the valve element between the open position and the closed position. For example, the fluid actuator can be a hydraulic drive or a pneumatic drive that applies a hydraulic fluid or compressed air to the actuator membrane.


The above-mentioned actuator membrane can be provided in addition to or form the flexible membrane mentioned at the beginning of this disclosure. The printhead according to the disclosure can therefore have two membranes for sealing and actuating or a single membrane for sealing and actuating.


With regard to the membrane, it should be noted that the membrane is preferably very thin and therefore preferably less than 0.5 mm, 0.1 mm, 0.05 mm or even less than 0.01 mm thick.


Concerning the printhead, it should be generally noted that the printhead preferably has a high application efficiency of at least 80%, 90%, 95% or even at least 99%, so that almost the entire applied coating agent is completely deposited on the component to be coated without overspray.


It is also advantageous for use in the series painting of vehicle body components if the printhead has a sufficient surface coating performance, preferably at least 0.5 m2/min, 1 m2/min, 2 m2/min or even 3 m2/min.


With regard to the material for the membrane, there are various possibilities within the scope of the disclosure. For example, a metal foil can be used or a membrane made of a polymer material such as polytetrafluoroethylene (PTFE), nitrile rubber (NBR), fluoroelastomers (e.g. perfluoro rubber (FFKM) or fluoro rubber (FKM), polyurethane (PU), perfluoroalkoxy polymer (PFA), polyester (PE), polyamide, polyethylene (PE), polypropylene (PP), polyoxymethylene (POM). It is also possible that the membrane is a microporous membrane.


In a variant of the disclosure, the printhead emits a droplet jet as opposed to a jet of coating agent that is connected in the longitudinal direction of the jet. In another variant of the disclosure, the printhead emits a jet of coating agent being continuous in the longitudinal direction of the jet as opposed to a droplet jet.



FIG. 1 shows a schematic representation of a printhead according to the disclosure that can be used, for example, for paint application in the series painting of vehicle body components in a paint shop, where the printhead is guided by a multi-axis paint robot with a standard robot kinematics.


The printhead has several nozzles 1, 2, 3 in a nozzle plate in order to apply the paint to the component surface of the component to be painted, whereby a spatially narrowly limited paint jet (continuous or in the form of drops) is emitted from the nozzles 1-3 each. To simplify matters, only the three nozzles 1-3 are shown in the drawing. In practice, however, the printhead has a larger number of nozzles.


Each of the nozzles 1-3 is assigned a control valve 4, 5 or 6 to either open or close the nozzles 1-3.


The individual control valves 4-6 each have a coil 7, 8 or 9 in which a coil core is 10, 11 or 12.


In addition, the control valves 4-6 each have a movable armature 13, 14 or 15, which forms a valve needle, whereby the armatures 13-15 are displaced depending on the current supply to the associated coil 7-9.


The armatures 13-15 are pressed downwards in the drawing by a return spring 16, 17, 18 into the closed position in which the nozzles 1-3 are closed.


Finally, the printhead has a flexible, continuous membrane 19 attached between the control valves 4-6 each to an upper channel wall 20 of a coating agent supply 21. This continuous membrane 19 may be in contact with, fixed to or continuously spaced from the upper channel wall 20 at individual points (e.g. between each valve actuator) on the upper channel wall 20. On the other hand, between these fixing points, the membrane 19 can be deflected downwards. Here, the membrane 19 separates the coating agent supply 21 from the control valve 4-6. This is advantageous because this prevents coating agent deposits on the control valves 4-6.


For paint application, the control valves 4-6 are actuated with current so that the armature 13-15 is pulled upwards against the force of the return spring 16-18, whereby the armatures 13-15 release the nozzles 1-3. In this raised opening position, paint can then escape from the coating agent supply 21 through the nozzles 1-3.


Without energizing the coils 7-9, the return spring 16-18 pushes the armatures 13-15 downwards in the drawing, so that the armatures 13-15 block the nozzles 1-3 and thus switch off the paint discharge.



FIG. 2 shows a modification of FIG. 1, so that to avoid repetitions reference is made to the above description, using the same reference signs for corresponding details.


A feature of this example is that instead of the continuous membrane 19, three separate membranes 19.1, 19.2, 19.3 are provided for the individual control valves 4-6.



FIG. 3 shows a schematic representation of a modification that is also broadly consistent with the above example, so that reference is made to the above description to avoid repetition, using the same reference signs for corresponding details.


A feature of this example is that the return spring 16 is omitted and the membrane 19 fulfils the function of the return spring 16 instead.



FIG. 4 shows a further variation which also largely corresponds to the example described above, so that reference is made to the above description to avoid repetitions.


A feature of this example is that the armature 13 does not form a valve needle.


In addition, the membrane 19 contains magnetic particles 22 to support the magnetic control.


Furthermore, the membrane 19 also fulfils the function of the return spring 16 in this example, which is thus omitted.



FIG. 5 shows a further modification, which in turn partly coincides with the examples described above, so that reference is made to the above description in order to avoid repetitions, whereby the same reference signs are used for the corresponding details.


A feature of this example is that the control valve 4 is arranged completely on the actuator side of the membrane 19. This means that the membrane 19 on the coating agent side is completely smooth and therefore does not offer any starting points for coating agent deposits. This facilitates the removal of paint residues during a rinsing process.



FIG. 6 shows a modification of FIG. 5 so that to avoid repetition, reference is made to the above description, using the same reference signs for appropriate details.


A feature of this example is that part 23 of the armature 13 is located on the coating agent side of the membrane 19, which may have design advantages.



FIG. 7 also shows a further modification, so that to avoid repetitions, reference is made again to the above description, using the same reference signs for corresponding individual details.


A feature of this example is that a nipple 24 is arranged on the coating agent side of the membrane 19, which closes the nozzle 1 in the closed position. The nipple 24 is therefore arranged concentrically and congruently to the nozzle 1.


Furthermore, FIG. 8 shows another example which again largely corresponds to the examples described above, so that reference is made to the above description to avoid repetitions, whereby the same reference signs are used for the corresponding details.


A feature of this example is a hydraulic valve actuator.


A further membrane 25 is provided for this purpose, which can be supplied with hydraulic fluid via a hydraulic supply line 26 in order to deflect the membrane 25 and thus also the membrane 19 downwards and thereby close the nozzle 1.


Finally, FIG. 9 shows another example which again largely corresponds to the examples described above, so that reference is made to the above description to avoid repetitions, using the same reference signs for the corresponding details.


This example has an extended plunger (anchor 13) on the media side. The membrane 19 is deflected only slightly. The advantage is a larger flow cross-section.


The disclosure is not limited to the preferred examples described above. Rather, a large number of variants and modifications are possible which also make use of the disclosure ideas and therefore fall within the scope of protection. The disclosure thus comprises various aspects of the disclosure which enjoy protection independently of each other.

Claims
  • 1. A printhead for applying a coating agent to a component, having a) a first plate defining a plurality of outlet openings for dispensing the coating agent,b) a coating agent supply for supplying the coating agent to the plurality of outlet openings,c) a second plate supporting a plurality of movable valve elements, each valve element of the plurality of movable valve elements movable between an open position and a closed position, each valve element of the plurality of movable valve elements closing a respective one of the plurality of outlet openings, whereas each valve element of the plurality of movable valve elements releases the respective one of the plurality of outlet openings in the open position, andd) a plurality of valve actuators for moving the plurality of movable valve elements between the open positions and the closed positions,e) further comprising a continuous flexible membrane which separates the plurality of valve actuators from the coating agent supply, wherein an actuator side of the continuous flexible membrane faces the valve actuators and a coating agent side of the continuous flexible membrane is exposed to the coating agent in the coating agent supply, and wherein the continuous flexible membrane is fixed to the second plate between each moveable valve element of the plurality of movable valve elements.
  • 2. The printhead according to claim 1, wherein a return spring is disposed between the second plate and the continuous flexible membrane, the return spring pressing the continuous flexible membrane away from the second plate.
  • 3. The printhead according to claim 1, wherein the continuous flexible membrane is elastic and presses the movable valve element away from the first plate.
  • 4. The printhead according to claim 1, wherein the continuous flexible membrane is magnetic or magnetizable and each valve actuator of the plurality of valve actuators has a magnetic actuator which either attracts or repels the magnetic or magnetizable continuous flexible membrane.
  • 5. The printhead according to claim 4, wherein the continuous flexible membrane contains magnetic or magnetizable particles to make the continuous flexible membrane magnetic.
  • 6. The printhead according to claim 1, wherein each valve actuator of the plurality of valve actuators includes a displaceable valve needle for moving the valve element between the open position and the closed position.
  • 7. The printhead according to claim 1, wherein each valve actuator of the plurality of valve actuators includes a magnetic actuator having an electromagnetic coil supported by the second plate.
  • 8. The printhead according to claim 6, wherein each valve needle is fixedly connected to the continuous flexible membrane and to one of the valve elements of the plurality of valve elements so that displacement of the valve needles inevitably leads to a corresponding deflection of the continuous flexible membrane and the valve element.
  • 9. The printhead according to claim 6, wherein the valve elements and the valve needles are located completely on the actuator side of the continuous flexible membrane and are separated from the coating agent supply by the continuous flexible membrane.
  • 10. The printhead according to claim 6, wherein at least one of the valve elements or the valve needles are located with one part in the coating agent supply and with another part on the actuator side of the continuous flexible membrane, wherein the continuous flexible membrane separates the one part from the another part.
  • 11. The printhead according to claim 1, wherein each of the valve elements has a nipple on the coating agent side of the continuous flexible membrane.
  • 12. The printhead according to claim 11, wherein the valve is elements are integrally formed on the continuous flexible membrane on the coating agent side of the continuous flexible membrane.
  • 13. The printhead according to claim 11, wherein a) the nipple on the coating agent side of the continuous flexible membrane is formed concentrically to one of the outlet openings, andb) the nipple on the coating agent side of the membrane is congruently shaped to the shape of one of the outlet openings.
  • 14. The printhead according to claim 1, wherein the valve actuators are fluid actuators which apply adjustable fluid pressure to a flexible actuator membrane on the actuator side of the continuous flexible membrane in order to deflect the actuator membrane and thus move the valve elements between the open positions and the closed positions.
  • 15. The printhead according to claim 14, wherein each of the fluid actuators is a hydraulic actuator or a pneumatic actuator.
  • 16. The printhead according to claim 15, wherein the actuator membrane forms the continuous flexible membrane.
  • 17. The printhead according to claim 1, wherein the continuous flexible membrane consists of a polymer material.
  • 18. The printhead according to claim 1, wherein the continuous flexible membrane is a microporous membrane.
  • 19. The printhead according to claim 1, wherein the plurality of valve actuators are supported by the second plate.
  • 20. The printhead according to claim 1, wherein the plurality of movable valve elements are independently movable relative to the second plate.
  • 21. The printhead head according to claim 1, wherein the continuous flexible membrane is a metal foil.
  • 22. The printhead according to claim 15, wherein the actuator membrane is provided in addition to the continuous flexible membrane.
Priority Claims (1)
Number Date Country Kind
10 2016 014 946.9 Dec 2016 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2017/081101 12/1/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2018/108564 6/21/2018 WO A
US Referenced Citations (165)
Number Name Date Kind
3421694 Muller Jan 1969 A
3717306 Hushon et al. Feb 1973 A
3981320 Wiggins Sep 1976 A
4141231 Kudlich Feb 1979 A
4375865 Springer Mar 1983 A
4383264 Lewis May 1983 A
4423999 Choly Jan 1984 A
4430010 Zrenner et al. Feb 1984 A
4435719 Snaper Mar 1984 A
4478241 Cardenas-Franco Oct 1984 A
4555719 Arway et al. Nov 1985 A
4668948 Merkel May 1987 A
4734711 Piatt et al. Mar 1988 A
4826135 Mielke May 1989 A
4894252 Bongen Jan 1990 A
4941778 Lehmann Jul 1990 A
4974780 Nakamura et al. Dec 1990 A
4985715 Cyphert et al. Jan 1991 A
5050533 Zaber Sep 1991 A
5072881 Taube, III Dec 1991 A
5429682 Harlow, Jr. et al. Jul 1995 A
5435884 Simmons et al. Jul 1995 A
5538221 Joswig Jul 1996 A
5556466 Martin et al. Sep 1996 A
5602575 Pauly Feb 1997 A
5636795 Sedgwick et al. Jun 1997 A
5647542 Diana Jul 1997 A
5659347 Taylor Aug 1997 A
5681619 Ogasawara Oct 1997 A
5740967 Simmons et al. Apr 1998 A
5843515 Crum Dec 1998 A
5951882 Simmons et al. Sep 1999 A
5964407 Sandkleiva Oct 1999 A
5976343 Schlaak Nov 1999 A
6179217 Yoshida et al. Jan 2001 B1
6540835 Kim et al. Apr 2003 B2
6607145 Boriani et al. Aug 2003 B1
6641667 Ochiai et al. Nov 2003 B2
6712285 Provenaz et al. Mar 2004 B2
6777032 Ogasahara et al. Aug 2004 B2
6811807 Zimmermann et al. Nov 2004 B1
6849684 Poppe et al. Feb 2005 B2
7160105 Edwards Jan 2007 B2
7178742 Nellentine et al. Feb 2007 B2
7182815 Katagami et al. Feb 2007 B2
7244310 Edwards Jul 2007 B2
7270712 Edwards Sep 2007 B2
7357959 Bauer Apr 2008 B2
7387071 Heinke et al. Jun 2008 B2
7449070 Fellingham Nov 2008 B2
7604333 Horsnell Oct 2009 B2
7757632 Edwards Jul 2010 B2
7837071 Achrainer Nov 2010 B2
7901741 Katagami et al. Mar 2011 B2
8028651 Rademacher et al. Oct 2011 B2
8118385 Van De Wynckel et al. Feb 2012 B2
8449087 Kataoka et al. May 2013 B2
8545943 Frankenberger et al. Oct 2013 B2
8652581 Merchant Feb 2014 B2
8678535 Beier et al. Mar 2014 B2
8875655 Pettersson et al. Nov 2014 B2
8882242 Beier et al. Nov 2014 B2
9108424 Wallsten et al. Aug 2015 B2
9140247 Herre et al. Sep 2015 B2
9156054 Ikushima Oct 2015 B2
9266353 Beier et al. Feb 2016 B2
9393787 Ikushima Jul 2016 B2
9464573 Remy et al. Oct 2016 B2
9592524 Fritz et al. Mar 2017 B2
9701143 Ikushima Jul 2017 B2
9707585 Reimert et al. Jul 2017 B2
9844792 Pettersson et al. Dec 2017 B2
9901945 Fehr et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
10016977 Stefani et al. Jul 2018 B2
10105946 Nakamura et al. Oct 2018 B2
10150304 Herre et al. Dec 2018 B2
10252552 Pitz et al. Apr 2019 B2
10272677 Stefani et al. Apr 2019 B2
10532569 Wallsten et al. Jan 2020 B2
20010017085 Kubo et al. Aug 2001 A1
20010019340 Kubo et al. Sep 2001 A1
20020024544 Codos Feb 2002 A1
20020043280 Ochiai et al. Apr 2002 A1
20020043567 Provenaz et al. Apr 2002 A1
20020105688 Katagami et al. Aug 2002 A1
20020128371 Poppe et al. Sep 2002 A1
20030020783 Sanada Jan 2003 A1
20030041884 Bahr Mar 2003 A1
20030049383 Ogasahara et al. Mar 2003 A1
20040028830 Bauer Feb 2004 A1
20040089234 Hagglund et al. May 2004 A1
20040123159 Kerstens Jun 2004 A1
20040173144 Edwards Sep 2004 A1
20040221804 Zimmermann et al. Nov 2004 A1
20040231594 Edwards Nov 2004 A1
20040238522 Edwards Dec 2004 A1
20040256501 Mellentine et al. Dec 2004 A1
20040261700 Edwards Dec 2004 A1
20050000422 Edwards Jan 2005 A1
20050015050 Mowery et al. Jan 2005 A1
20050016451 Edwards Jan 2005 A1
20050023367 Reighard et al. Feb 2005 A1
20050243112 Kobayashi et al. Nov 2005 A1
20060061613 Fienup et al. Mar 2006 A1
20060068109 Frankenberger et al. Mar 2006 A1
20060146379 Katagami et al. Jul 2006 A1
20060238587 Horsnell Oct 2006 A1
20060251796 Fellingham Nov 2006 A1
20070062383 Gazeau Mar 2007 A1
20070292626 Larsson et al. Dec 2007 A1
20080271674 Rademacher Nov 2008 A1
20080309698 Nakano et al. Dec 2008 A1
20090027433 Van De Wynckel et al. Jan 2009 A1
20090029069 Edwards Jan 2009 A1
20090181182 Sloan Jul 2009 A1
20100132612 Achrainer Jun 2010 A1
20100156970 Ikushima Jun 2010 A1
20100170918 Achrainer Jul 2010 A1
20100279013 Frankenberger et al. Nov 2010 A1
20100282283 Bauer Nov 2010 A1
20100321448 Buestgens et al. Dec 2010 A1
20110014371 Herre et al. Jan 2011 A1
20110084150 Merchant Apr 2011 A1
20110248046 Simion Oct 2011 A1
20110262622 Herre Oct 2011 A1
20120085842 Ciardella Apr 2012 A1
20120105522 Wallsten May 2012 A1
20120114849 Melcher May 2012 A1
20120162331 Kataoka Jun 2012 A1
20120186518 Herre Jul 2012 A1
20120219699 Pettersson et al. Aug 2012 A1
20120249679 Beier et al. Oct 2012 A1
20120282405 Herre Nov 2012 A1
20130201243 Yoshida Aug 2013 A1
20130215203 Chen Aug 2013 A1
20130257984 Beier et al. Oct 2013 A1
20130284833 Fritz et al. Oct 2013 A1
20140076985 Pettersson et al. Mar 2014 A1
20140242285 Pettersson et al. Aug 2014 A1
20150009254 Kaiba et al. Jan 2015 A1
20150042716 Beier et al. Feb 2015 A1
20150086723 Bustgens Mar 2015 A1
20150098028 Ohnishi Apr 2015 A1
20150328654 Schwab Nov 2015 A1
20150375258 Fritz et al. Dec 2015 A1
20150375507 Ikushima Dec 2015 A1
20160052312 Pitz et al. Feb 2016 A1
20160074822 Han Mar 2016 A1
20160288552 Ikushima Oct 2016 A1
20160306364 Ikushima et al. Oct 2016 A1
20170087837 Stefani et al. Mar 2017 A1
20170106393 Hampson et al. Apr 2017 A1
20170136481 Fritz et al. May 2017 A1
20170252765 Medard Sep 2017 A1
20170267002 Pitz et al. Sep 2017 A1
20170299088 Rau Oct 2017 A1
20170361346 Lahidjanian et al. Dec 2017 A1
20180022105 Nakamura et al. Jan 2018 A1
20180056670 Kerr Mar 2018 A1
20180093491 Murayama et al. Apr 2018 A1
20180178505 Stefani et al. Jun 2018 A1
20180222186 Stefani et al. Aug 2018 A1
20180250955 Herre Sep 2018 A1
20190091712 Medard et al. Mar 2019 A1
Foreign Referenced Citations (181)
Number Date Country
2287527 Aug 1998 CN
1331661 Jan 2002 CN
1512919 Jul 2004 CN
1176815 Nov 2004 CN
1668386 Sep 2005 CN
1761530 Apr 2006 CN
101264698 Sep 2008 CN
101309755 Nov 2008 CN
101657264 Feb 2010 CN
102177002 Sep 2011 CN
102198434 Sep 2011 CN
102971080 Mar 2013 CN
103153483 Jun 2013 CN
103909743 Jul 2014 CN
104613205 May 2015 CN
104994966 Oct 2015 CN
105358259 Feb 2016 CN
1284250 Nov 1968 DE
1710895 Sep 1977 DE
3045401 Jul 1982 DE
3221327 Sep 1983 DE
3225554 Jan 1984 DE
3634747 Aug 1987 DE
3804092 Sep 1988 DE
4115111 Nov 1991 DE
4138491 May 1993 DE
9405600 Jun 1994 DE
68924202 Feb 1996 DE
19606716 Aug 1997 DE
19630290 Jan 1998 DE
19731829 Jan 1999 DE
19743804 Apr 1999 DE
9422327 Mar 2000 DE
19852079 May 2000 DE
19936790 Feb 2001 DE
20017629 Mar 2001 DE
10048749 Apr 2002 DE
69429354 May 2002 DE
69622407 Mar 2003 DE
10307719 Sep 2003 DE
60001898 Feb 2004 DE
102004021223 Dec 2004 DE
10331206 Jan 2005 DE
102004034270 Feb 2006 DE
102004044655 Mar 2006 DE
102004049471 Apr 2006 DE
60212523 Feb 2007 DE
69836126 Aug 2007 DE
60125369 Oct 2007 DE
102006021623 Nov 2007 DE
102006056051 May 2008 DE
102007018877 Oct 2008 DE
102007037663 Feb 2009 DE
10 2008 018 881 Sep 2009 DE
102008053178 May 2010 DE
102009029946 Dec 2010 DE
102009038462 Mar 2011 DE
102010004496 Jul 2011 DE
102010019612 Nov 2011 DE
102012006371 Jul 2012 DE
102012005087 Oct 2012 DE
102012005650 Sep 2013 DE
102012212469 Jan 2014 DE
102012109123 Mar 2014 DE
202013101134 Jun 2014 DE
102013002412 Aug 2014 DE
102013011107 Aug 2014 DE
102013205171 Sep 2014 DE
102014006991 Dec 2014 DE
102014007523 Nov 2015 DE
102014008183 Dec 2015 DE
102014012705 Mar 2016 DE
102014013158 Mar 2016 DE
0138322 Apr 1985 EP
0297309 Jan 1989 EP
0665106 Aug 1995 EP
1120258 Aug 2001 EP
1764226 Mar 2007 EP
1852733 Nov 2007 EP
1884365 Feb 2008 EP
1946846 Jul 2008 EP
2002898 Dec 2008 EP
2133154 Dec 2009 EP
2151282 Feb 2010 EP
2196267 Jun 2010 EP
2380744 Oct 2011 EP
2433716 Mar 2012 EP
2468512 Jun 2012 EP
2641661 Sep 2013 EP
2644392 Oct 2013 EP
2777938 Sep 2014 EP
2799150 Nov 2014 EP
2842753 Mar 2015 EP
3002128 Apr 2016 EP
3156138 Apr 2017 EP
3213823 Sep 2017 EP
3257590 Dec 2017 EP
3272669 Jan 2018 EP
3068626 Oct 2019 EP
3010918 Mar 2015 FR
2200433 Aug 1988 GB
2367771 Apr 2002 GB
2507069 Apr 2014 GB
1438942 Aug 2003 GN
101784348 Jul 2010 GN
106414081 Feb 2017 GN
S5722070 Feb 1982 JP
S62116442 May 1987 JP
H04-106669 Sep 1992 JP
H0798171 Oct 1995 JP
H09192583 Jul 1997 JP
2000158670 Jun 2000 JP
2000317354 Nov 2000 JP
2001129456 May 2001 JP
2001157863 Jun 2001 JP
2001239652 Sep 2001 JP
2001300404 Oct 2001 JP
2002361863 Dec 2002 JP
2003506210 Feb 2003 JP
2003136030 May 2003 JP
2004142382 May 2004 JP
2005526234 Sep 2005 JP
2007021760 Feb 2007 JP
2007152666 Jun 2007 JP
2007520340 Jul 2007 JP
2007245633 Sep 2007 JP
2007289848 Nov 2007 JP
2010531213 Sep 2010 JP
2010531729 Sep 2010 JP
2010241003 Oct 2010 JP
2011206958 Oct 2011 JP
2012506305 Mar 2012 JP
2012135925 Jul 2012 JP
2012206116 Oct 2012 JP
2012228643 Nov 2012 JP
2012228660 Nov 2012 JP
2013067179 Apr 2013 JP
2013530816 Aug 2013 JP
2013530816 Aug 2013 JP
2013188706 Sep 2013 JP
2014019140 Feb 2014 JP
2014050832 Mar 2014 JP
2014111307 Jun 2014 JP
2015-009222 Jan 2015 JP
2015096322 May 2015 JP
2015520011 Jul 2015 JP
2015193129 Nov 2015 JP
2016507372 Mar 2016 JP
2016526910 Sep 2016 JP
2016175077 Oct 2016 JP
2016175662 Oct 2016 JP
2018012065 Jan 2018 JP
2020513311 May 2020 JP
2020513314 May 2020 JP
8601775 Mar 1986 WO
9856585 Dec 1998 WO
02098576 Dec 2002 WO
03021519 Mar 2003 WO
2003062129 Jul 2003 WO
2004048112 Jun 2004 WO
2004085738 Oct 2004 WO
2005016556 Feb 2005 WO
2005075170 Aug 2005 WO
2006022217 Mar 2006 WO
2007121905 Nov 2007 WO
2009019036 Feb 2009 WO
2010046064 Apr 2010 WO
2010146473 Dec 2010 WO
2011044491 Apr 2011 WO
2011128439 Oct 2011 WO
2011138048 Nov 2011 WO
2013121565 Aug 2013 WO
2015071270 May 2015 WO
2015096322 Jul 2015 WO
2015186014 Dec 2015 WO
2016-087016 Jun 2016 WO
2016142510 Sep 2016 WO
2016145000 Sep 2016 WO
2017006245 Jan 2017 WO
2017006246 Jan 2017 WO
2018102846 Jun 2018 WO
Non-Patent Literature Citations (55)
Entry
European Search Report for EP20170638.9 dated Sep. 14, 2020 (4 pages—English translation not available).
European Search Report for EP20170021.8 dated Sep. 8, 2020 (11 pages—English translation not available).
European Search Report for EP20170025.9 dated Sep. 9, 2020 (4 pages—English translation not available).
European Search Report for EP20170016.8 dated Sep. 7, 2020 (4 pages—English translation not available).
China National Intellectual Property Administration Office Action and Search Report for CN Application No. 201780077018.3 dated Aug. 27, 2020 (11 pages; Search Report in English).
Ghasem, G. et al; “Chapter 2 Background on Sprays and Their Production”, Industrial Sprays and Atomization: Design, Analysis and Applications, Jan. 1, 2002, Springer, London, pp. 7-33, XP009195118, ISBN: 978-1-4471-3816-7.
International Search Report and Written Opinion for PCT/EP2017/081141 dated Feb. 26, 2018 (17 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081114 dated May 15, 2018 (33 pages; with English translation).
Anonymous: “Roboterkalibrierung—Wikipedia”, Nov. 7, 2016, XP055471615, Gefunden im Internet: URL: https://de.wikipedia.org/w/index.php?title=Roboterkalibrierung&oldid=159460756 [gefunden am Apr. 30, 2018] das ganze dockument (8 pages; with English translation).
Beyer, Lukas: “Genauigkeitssteigerung von Industrierobotern”, Forschungsberichte Aus Dem Laboratorium Fertigungstechnik/Helmut-Schmidt-Universitat, Universitat Der Bundeswehr Hamburg, Dec. 31, 2005, Seiten 1-4, XP009505118; ISSN: 1860-2886; ISBN: 978-3-8322-3681-6 (13 pages; with English machine translation).
International Search Report and Written Opinion for PCT/EP2017/081108 dated Feb. 28, 2018 (with English translation; 18 pages).
Intemational Search Report and Written Opinion for PCT/EP2017/081099 dated Feb. 26, 2018 (21 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081102 dated Mar. 14, 2018 (16 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081105 dated Feb. 26, 2018 (19 pages; with English translation).
Intemational Search Report and Written Opinion for PCT/EP2017/081152 dated May 15, 2018 (25 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081098 dated May 14, 2018 (26 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081101 dated Feb. 28, 2018 (14 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081121 dated Feb. 26, 2018 (20 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081117 dated Mar. 12, 2018 (27 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081123 dated Feb. 26, 2018 (20 pages; with English translation).
Chinese Office Action and Search Report for CN201780077603.3 dated Oct. 12, 2020 (15 pages; English translation not available).
EPO Examination Report for Application No. 201702818.1 dated Dec. 18, 2020 (with English machine translation; 6 pages).
Non-Final Office Action for U.S. Appl. No. 16/468,691 dated Jan. 7, 2021 (79 pages).
EPO Official Notification of Opposition for Application No. 178218038 dated Feb. 10, 2021 (64 pages; with English machine translation).
Non-Final Office Action dated Feb. 5, 2021 for U.S. Appl. No. 16/468,701 (80 pages).
Non-Final Office Action dated Feb. 18, 2021 for U.S. Appl. No. 16/468,692 (97 pages).
Chinese Office Action for Application No. CN20178007017.9 dated Aug. 31, 2020 (8 pages; with English translation).
Non Final Office Action for U.S. Appl. No. 16/468,700 dated Dec. 1, 2020 (73 pages).
Non Final Office Action for U.S. Appl. No. 16/468,696 dated Nov. 2, 2020 (58 pages).
Non Final Office Action for U.S. Appl. No. 16/468,689 dated Oct. 15, 2020 (77 pages).
Chinese Office Action for CN201780077476.7 dated Sep. 23, 2020 (12 pages; English translation not available).
JPO Submission for JP2019-531096; submitted Dec. 21, 2020 (32 pages; with English translation).
JPO Submission for JP2019-531957; submitted Dec. 21, 2020 (21 pages; with English translation).
Fianl Office Action dated May 13, 2021 for U.S. Appl. No. 16/468,691 (70 pages).
Final Office Action dated Mar. 19, 2021 for U.S. Appl. No. 16/468,696 (45 pages).
Non-Final Office Action dated Apr. 28, 2021 for U.S. Appl. No. 16/468,693 (109 pages).
Final Office Action dated Apr. 19, 2021 for U.S. Appl. No. 16/468,700 (62 pages).
Notice of Allowance mailed in U.S. Appl. No. 16/468,689 dated Jun. 2, 2021 (38 pages).
Final Office Action dated Jun. 11, 2021 for U.S. Appl. No. 16/468,701 (53 pages).
JPO Notification of Reasons for Rejection for Application No. JP2019-532030 dated May 18, 2021 (6 pages; with English translation).
CIPO Office Action for Application No. CN201780077474.8 dated Apr. 26, 2021 (17 pages; with English translation).
Chinese Office Action dated Jun. 2, 2021 for Application No. CN201780077017.9 (17 pages; with English machine translation).
Japanese Notification of Reasons for Rejection dated Jun. 1, 2021 for Application No. JP2019-531944 (14 pages; with English machine translation).
Japanese Notification of Reasons for Rejection dated Jun. 8, 2021 for Application No. JP2019-531957 (13 pages; with English machine translation).
Supplemental Notice of Allowability dated Jul. 8, 2021 for U.S. Appl. No. 16/468,696 (11 pages).
Liptak, Bela. (2006). Instrument Engineers' Handbook (4th Edition)—Process Control and Optimization, vol. 2-2.1.3.5 Process Time Constant, (pp. 99-102). Taylor & Francis. Retrieved from https://app.knovel.eom/hotlink/pdf/id:kt00CC7HL1/instrument-engineers/process-time-constant (Year: 2006).
Japenese Patent Office Notice of Reasons of Refusal for Application No. JP 2019-531967 dated Jun. 8, 2021 (8 pages; with English machine translation).
Notification of Reasons for Refusal for Application No. JP2019-532012 dated Jun. 22, 2021 (6 pages; with English machine translation).
Notification of Reasons for Refusal for Application No. JP2019-527330 dated Jun. 22, 2021 (10 pages; with English machine translation).
JPO Office Action for Application No. JP2019-531097 dated Jun. 29, 2021 (10 pages; with English machine translation).
JPO Office Action for Application No. 2019-531096 dated Jul. 6, 2021 (9 pages; with English machine translation).
JPO Office Action for Application No. 2019-531098 dated Jul. 6, 2021 (5 pages; English translation only).
JPO Office Action for Application No. 2019-531459 dated Jul. 6, 2021 (8 pages; with English machine translation).
JPO Office Action dated Jul. 3, 2021 for Application No. JP2019-532024 (12 pages; with English machine translation).
Non-Final Office Action dated Aug. 27, 2021 for U.S. Appl. No. 16/468,695 (149 pages).
Related Publications (1)
Number Date Country
20190337005 A1 Nov 2019 US