This application is a national stage of, and claims priority to, Patent Cooperation Treaty Application No. PCT/EP2017/081101, filed on Dec. 1, 2017, which application claims priority to German Application No. DE 10 2016 014 946.9, filed on Dec. 14, 2016, which applications are hereby incorporated herein by reference in their entireties.
The disclosure concerns a printhead for the application of a coating agent to a component, in particular for the application of a paint to a vehicle body component.
For the serial painting of vehicle body components, rotary atomizers are usually used as application devices, but these have the disadvantage of limited application efficiency, i.e. only part of the applied paint deposits on the components to be coated, while the rest of the applied paint has to be disposed of as so-called overspray.
A newer development line, on the other hand, provides for so-called printheads as application devices, as known for example from DE 10 2013 002 412 A1, U.S. Pat. No. 9,108,424 B2 and DE 10 2010 019 612 A1. In contrast to the known rotary atomizers, such printheads do not emit a spray of the paint to be applied, but rather a narrowly confined paint jet, which is deposited almost completely on the component to be laquered, so that virtually no overspray occurs.
With the well-known printheads, the coating agent to be applied (e.g. paint) is ejected through a nozzle, whereby the nozzle can be closed or opened by a sliding valve needle. The mechanical drive of the valve needle can be done by a magnetic actuator, which moves the valve needle and thus either closes or releases the nozzle.
A disadvantage of these well-known printheads is the fact that the valve actuator, including the valve needle, is exposed to the coating agent to be applied. On the one hand, this can lead to coating deposits on the valve actuator, which in the worst case can lead to malfunctions. On the other hand, this is also problematic in case of a colour change if different types of coating agents are to be applied one after the other, as the conventional design makes the rinsing of the printhead more difficult.
The technical background of the disclosure can also be found in DE 10 2014 012 705 A1 and DE 10 2007 037 663 A1.
The disclosure is therefore based on the task of creating a correspondingly improved printhead.
The printhead according to the disclosure is used to apply a coating agent (e.g. paint, adhesive, primer, sealant, etc.) to a component. Preferably, the printhead is designed in such a way that it can apply a coating agent to a vehicle body component. The term “printhead” used in the context of the disclosure is to be generally understood and serves essentially only to distinguish it from conventional atomizers which do not emit a spatially sharply defined jet of coating agent, but rather a spray of the coating agent. Such printheads are already known from the state of the art and therefore do not have to be described further. However, reference is only made to the above-mentioned publications U.S. Pat. No. 9,108,424 B2, DE 10 2010 019 612 A1 and DE 10 2013 002 412 A1, which in principle describe such printheads.
The printhead according to the disclosure has at least one outlet opening for dispensing the coating agent. In one example, this outlet opening is the nozzle opening of the printhead through which a coating agent jet of the coating agent is dispensed. However, it is also possible that the outlet opening may be another outlet opening upstream of the actual nozzle opening.
In addition, in accordance with the state of the art, the printhead according to the disclosure has a coating agent supply to supply the coating agent to be applied to the outlet opening.
Further, in accordance with the state of the art, the printhead according to the disclosure incorporates a movable valve element (e.g., a valve needle) movable between an open position and a closed position, the valve element closing the outlet opening in the closed position, while the movable valve element opens the outlet opening in the open position.
Furthermore, in accordance with the state of the art, the printhead according to the disclosure includes a valve actuator for moving the valve element between the open position and the closed position. With regard to the constructive design of the valve actuator, the disclosure offers various possibilities which are described in detail below. For example, the valve actuator can be a magnetic actuator, a fluid actuator (pneumatic or hydraulic) or a piezo actuator, to name just a few examples.
In contrast to the conventional printheads described at the beginning, the printhead according to the disclosure now features a flexible membrane that separates the valve actuator from the coating agent supply, with the membrane facing the valve actuator on its actuator side and exposed to the coating agent in the coating agent supply on its coating agent side.
The coating agent to be applied thus only touches the coating agent side of the flexible membrane in the coating agent supply, not the valve actuator, which is thus protected from the effect of the coating agent. With the printhead according to the disclosure, the valve actuator is separated from the media-carrying area, which is advantageous.
This separation prevents deposits in the drive area (e.g. on valve needles, pistons, in the inner tube of a coil, etc.). This maintains the function of the printhead and extends cleaning, flushing and maintenance intervals.
A further advantage is the considerably improved rinsing capability of the printhead, because the flexible membrane on its coating agent side offers hardly any starting points for coating agent deposits. This also has the advantage of a faster colour change, as the rinsing process is shorter.
In addition, two-component or multi-component coating paints can also be applied with the printhead according to the disclosure.
In addition, process reliability is increased and leakage safety improved.
Finally, lower actuating power is required to move the moving valve element.
In an example, the printhead has not only a single outlet opening with a single valve element, but several outlet openings, each with a movable valve element and a valve actuator.
In one variant of this example, each valve actuator is assigned a flexible membrane to separate the valve actuator.
In another variant of this example, a common, continuous, flexible membrane is provided, which separates the valve actuators from the coating agent supply. This continuous membrane can lie against the upper channel wall at individual points (e.g. between each valve actuator), be fastened or be continuously spaced from the upper channel wall.
It should also be noted that the printhead may have a return spring (e.g. coil spring) to push the flexible membrane into its rest position, whereby the rest position is preferably the closed position in which the movable valve element closes the outlet opening.
In addition to this return spring or instead of the return spring, the membrane can be elastically resilient, whereby the membrane then additionally fulfils the function of a return spring.
The movable valve element (e.g. valve needle) can therefore be pushed into the rest position by the return spring as well as by the elastic membrane.
Alternatively, it is possible to do without the usual return spring and then only the elastic membrane takes over the function of the return spring.
It should also be noted in this context that the rest position is preferably the closed position in which the movable valve element closes the outlet opening. Alternatively, it is also possible that the rest position is the open position in which the moving valve element releases the outlet opening. The flexible membrane can therefore press the moving valve element into either the closed or the open position due to its spring force, depending on the design of the printhead.
The disclosure also offers the possibility that the membrane itself may be magnetic or magnetizable or partially magnetic or magnetizable, or that it may be magnetic or magnetizable in the action area of the magnetic drive, for example by elements connected to the membrane and driven by a magnetic drive that either attracts or repels the magnetic membrane depending on its polarity. The magnetic effect of the membrane can, for example, be achieved by the membrane containing magnetic particles to make the membrane magnetic.
It has been briefly mentioned above that the printhead can have a sliding valve needle to move the movable valve element between the open position and the closed position. The valve needle can form a movable armature in a solenoid actuator.
In an example of the disclosure, this valve needle is firmly connected to the membrane and the valve element, so that the displacement of the valve needle inevitably leads to a corresponding deflection of the membrane and the valve element.
It should also be mentioned that the valve element and/or the valve needle may be located completely on the actuator side of the membrane and are separated from the coating agent supply by the membrane. Here the membrane can then be completely smooth on the coating agent side and therefore does not form any starting points for coating agent deposits.
Alternatively, it is also possible that the valve element and/or the valve needle are arranged with one part on the coating agent side and with another part on the actuator side with respect to the membrane, so that the membrane separates the two parts from each other. This variant of the disclosure may achieve a larger flow cross-section for the coating agent.
In addition, the valve element may have a nipple on the coating agent side of the membrane for closing or releasing the outlet opening, whereby this nipple then releases or closes the outlet opening.
In an example, this nipple is integrally molded to the membrane on the outlet side of the membrane.
It should also be mentioned in this context that the nipple may be shaped concentrically and congruently to the outlet opening in order to be able to close the outlet opening sealingly.
In a variant of the disclosure, the valve actuator is a fluid actuator that applies an adjustable fluid pressure to a flexible actuator membrane in order to deflect the actuator membrane and thus move the valve element between the open position and the closed position. For example, the fluid actuator can be a hydraulic drive or a pneumatic drive that applies a hydraulic fluid or compressed air to the actuator membrane.
The above-mentioned actuator membrane can be provided in addition to or form the flexible membrane mentioned at the beginning of this disclosure. The printhead according to the disclosure can therefore have two membranes for sealing and actuating or a single membrane for sealing and actuating.
With regard to the membrane, it should be noted that the membrane is preferably very thin and therefore preferably less than 0.5 mm, 0.1 mm, 0.05 mm or even less than 0.01 mm thick.
Concerning the printhead, it should be generally noted that the printhead preferably has a high application efficiency of at least 80%, 90%, 95% or even at least 99%, so that almost the entire applied coating agent is completely deposited on the component to be coated without overspray.
It is also advantageous for use in the series painting of vehicle body components if the printhead has a sufficient surface coating performance, preferably at least 0.5 m2/min, 1 m2/min, 2 m2/min or even 3 m2/min.
With regard to the material for the membrane, there are various possibilities within the scope of the disclosure. For example, a metal foil can be used or a membrane made of a polymer material such as polytetrafluoroethylene (PTFE), nitrile rubber (NBR), fluoroelastomers (e.g. perfluoro rubber (FFKM) or fluoro rubber (FKM), polyurethane (PU), perfluoroalkoxy polymer (PFA), polyester (PE), polyamide, polyethylene (PE), polypropylene (PP), polyoxymethylene (POM). It is also possible that the membrane is a microporous membrane.
In a variant of the disclosure, the printhead emits a droplet jet as opposed to a jet of coating agent that is connected in the longitudinal direction of the jet. In another variant of the disclosure, the printhead emits a jet of coating agent being continuous in the longitudinal direction of the jet as opposed to a droplet jet.
The printhead has several nozzles 1, 2, 3 in a nozzle plate in order to apply the paint to the component surface of the component to be painted, whereby a spatially narrowly limited paint jet (continuous or in the form of drops) is emitted from the nozzles 1-3 each. To simplify matters, only the three nozzles 1-3 are shown in the drawing. In practice, however, the printhead has a larger number of nozzles.
Each of the nozzles 1-3 is assigned a control valve 4, 5 or 6 to either open or close the nozzles 1-3.
The individual control valves 4-6 each have a coil 7, 8 or 9 in which a coil core is 10, 11 or 12.
In addition, the control valves 4-6 each have a movable armature 13, 14 or 15, which forms a valve needle, whereby the armatures 13-15 are displaced depending on the current supply to the associated coil 7-9.
The armatures 13-15 are pressed downwards in the drawing by a return spring 16, 17, 18 into the closed position in which the nozzles 1-3 are closed.
Finally, the printhead has a flexible, continuous membrane 19 attached between the control valves 4-6 each to an upper channel wall 20 of a coating agent supply 21. This continuous membrane 19 may be in contact with, fixed to or continuously spaced from the upper channel wall 20 at individual points (e.g. between each valve actuator) on the upper channel wall 20. On the other hand, between these fixing points, the membrane 19 can be deflected downwards. Here, the membrane 19 separates the coating agent supply 21 from the control valve 4-6. This is advantageous because this prevents coating agent deposits on the control valves 4-6.
For paint application, the control valves 4-6 are actuated with current so that the armature 13-15 is pulled upwards against the force of the return spring 16-18, whereby the armatures 13-15 release the nozzles 1-3. In this raised opening position, paint can then escape from the coating agent supply 21 through the nozzles 1-3.
Without energizing the coils 7-9, the return spring 16-18 pushes the armatures 13-15 downwards in the drawing, so that the armatures 13-15 block the nozzles 1-3 and thus switch off the paint discharge.
A feature of this example is that instead of the continuous membrane 19, three separate membranes 19.1, 19.2, 19.3 are provided for the individual control valves 4-6.
A feature of this example is that the return spring 16 is omitted and the membrane 19 fulfils the function of the return spring 16 instead.
A feature of this example is that the armature 13 does not form a valve needle.
In addition, the membrane 19 contains magnetic particles 22 to support the magnetic control.
Furthermore, the membrane 19 also fulfils the function of the return spring 16 in this example, which is thus omitted.
A feature of this example is that the control valve 4 is arranged completely on the actuator side of the membrane 19. This means that the membrane 19 on the coating agent side is completely smooth and therefore does not offer any starting points for coating agent deposits. This facilitates the removal of paint residues during a rinsing process.
A feature of this example is that part 23 of the armature 13 is located on the coating agent side of the membrane 19, which may have design advantages.
A feature of this example is that a nipple 24 is arranged on the coating agent side of the membrane 19, which closes the nozzle 1 in the closed position. The nipple 24 is therefore arranged concentrically and congruently to the nozzle 1.
Furthermore,
A feature of this example is a hydraulic valve actuator.
A further membrane 25 is provided for this purpose, which can be supplied with hydraulic fluid via a hydraulic supply line 26 in order to deflect the membrane 25 and thus also the membrane 19 downwards and thereby close the nozzle 1.
Finally,
This example has an extended plunger (anchor 13) on the media side. The membrane 19 is deflected only slightly. The advantage is a larger flow cross-section.
The disclosure is not limited to the preferred examples described above. Rather, a large number of variants and modifications are possible which also make use of the disclosure ideas and therefore fall within the scope of protection. The disclosure thus comprises various aspects of the disclosure which enjoy protection independently of each other.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 014 946.9 | Dec 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/081101 | 12/1/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/108564 | 6/21/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3421694 | Muller | Jan 1969 | A |
3717306 | Hushon et al. | Feb 1973 | A |
3981320 | Wiggins | Sep 1976 | A |
4141231 | Kudlich | Feb 1979 | A |
4375865 | Springer | Mar 1983 | A |
4383264 | Lewis | May 1983 | A |
4423999 | Choly | Jan 1984 | A |
4430010 | Zrenner et al. | Feb 1984 | A |
4435719 | Snaper | Mar 1984 | A |
4478241 | Cardenas-Franco | Oct 1984 | A |
4555719 | Arway et al. | Nov 1985 | A |
4668948 | Merkel | May 1987 | A |
4734711 | Piatt et al. | Mar 1988 | A |
4826135 | Mielke | May 1989 | A |
4894252 | Bongen | Jan 1990 | A |
4941778 | Lehmann | Jul 1990 | A |
4974780 | Nakamura et al. | Dec 1990 | A |
4985715 | Cyphert et al. | Jan 1991 | A |
5050533 | Zaber | Sep 1991 | A |
5072881 | Taube, III | Dec 1991 | A |
5429682 | Harlow, Jr. et al. | Jul 1995 | A |
5435884 | Simmons et al. | Jul 1995 | A |
5538221 | Joswig | Jul 1996 | A |
5556466 | Martin et al. | Sep 1996 | A |
5602575 | Pauly | Feb 1997 | A |
5636795 | Sedgwick et al. | Jun 1997 | A |
5647542 | Diana | Jul 1997 | A |
5659347 | Taylor | Aug 1997 | A |
5681619 | Ogasawara | Oct 1997 | A |
5740967 | Simmons et al. | Apr 1998 | A |
5843515 | Crum | Dec 1998 | A |
5951882 | Simmons et al. | Sep 1999 | A |
5964407 | Sandkleiva | Oct 1999 | A |
5976343 | Schlaak | Nov 1999 | A |
6179217 | Yoshida et al. | Jan 2001 | B1 |
6540835 | Kim et al. | Apr 2003 | B2 |
6607145 | Boriani et al. | Aug 2003 | B1 |
6641667 | Ochiai et al. | Nov 2003 | B2 |
6712285 | Provenaz et al. | Mar 2004 | B2 |
6777032 | Ogasahara et al. | Aug 2004 | B2 |
6811807 | Zimmermann et al. | Nov 2004 | B1 |
6849684 | Poppe et al. | Feb 2005 | B2 |
7160105 | Edwards | Jan 2007 | B2 |
7178742 | Nellentine et al. | Feb 2007 | B2 |
7182815 | Katagami et al. | Feb 2007 | B2 |
7244310 | Edwards | Jul 2007 | B2 |
7270712 | Edwards | Sep 2007 | B2 |
7357959 | Bauer | Apr 2008 | B2 |
7387071 | Heinke et al. | Jun 2008 | B2 |
7449070 | Fellingham | Nov 2008 | B2 |
7604333 | Horsnell | Oct 2009 | B2 |
7757632 | Edwards | Jul 2010 | B2 |
7837071 | Achrainer | Nov 2010 | B2 |
7901741 | Katagami et al. | Mar 2011 | B2 |
8028651 | Rademacher et al. | Oct 2011 | B2 |
8118385 | Van De Wynckel et al. | Feb 2012 | B2 |
8449087 | Kataoka et al. | May 2013 | B2 |
8545943 | Frankenberger et al. | Oct 2013 | B2 |
8652581 | Merchant | Feb 2014 | B2 |
8678535 | Beier et al. | Mar 2014 | B2 |
8875655 | Pettersson et al. | Nov 2014 | B2 |
8882242 | Beier et al. | Nov 2014 | B2 |
9108424 | Wallsten et al. | Aug 2015 | B2 |
9140247 | Herre et al. | Sep 2015 | B2 |
9156054 | Ikushima | Oct 2015 | B2 |
9266353 | Beier et al. | Feb 2016 | B2 |
9393787 | Ikushima | Jul 2016 | B2 |
9464573 | Remy et al. | Oct 2016 | B2 |
9592524 | Fritz et al. | Mar 2017 | B2 |
9701143 | Ikushima | Jul 2017 | B2 |
9707585 | Reimert et al. | Jul 2017 | B2 |
9844792 | Pettersson et al. | Dec 2017 | B2 |
9901945 | Fehr et al. | Feb 2018 | B2 |
9914150 | Pettersson et al. | Mar 2018 | B2 |
10016977 | Stefani et al. | Jul 2018 | B2 |
10105946 | Nakamura et al. | Oct 2018 | B2 |
10150304 | Herre et al. | Dec 2018 | B2 |
10252552 | Pitz et al. | Apr 2019 | B2 |
10272677 | Stefani et al. | Apr 2019 | B2 |
10532569 | Wallsten et al. | Jan 2020 | B2 |
20010017085 | Kubo et al. | Aug 2001 | A1 |
20010019340 | Kubo et al. | Sep 2001 | A1 |
20020024544 | Codos | Feb 2002 | A1 |
20020043280 | Ochiai et al. | Apr 2002 | A1 |
20020043567 | Provenaz et al. | Apr 2002 | A1 |
20020105688 | Katagami et al. | Aug 2002 | A1 |
20020128371 | Poppe et al. | Sep 2002 | A1 |
20030020783 | Sanada | Jan 2003 | A1 |
20030041884 | Bahr | Mar 2003 | A1 |
20030049383 | Ogasahara et al. | Mar 2003 | A1 |
20040028830 | Bauer | Feb 2004 | A1 |
20040089234 | Hagglund et al. | May 2004 | A1 |
20040123159 | Kerstens | Jun 2004 | A1 |
20040173144 | Edwards | Sep 2004 | A1 |
20040221804 | Zimmermann et al. | Nov 2004 | A1 |
20040231594 | Edwards | Nov 2004 | A1 |
20040238522 | Edwards | Dec 2004 | A1 |
20040256501 | Mellentine et al. | Dec 2004 | A1 |
20040261700 | Edwards | Dec 2004 | A1 |
20050000422 | Edwards | Jan 2005 | A1 |
20050015050 | Mowery et al. | Jan 2005 | A1 |
20050016451 | Edwards | Jan 2005 | A1 |
20050023367 | Reighard et al. | Feb 2005 | A1 |
20050243112 | Kobayashi et al. | Nov 2005 | A1 |
20060061613 | Fienup et al. | Mar 2006 | A1 |
20060068109 | Frankenberger et al. | Mar 2006 | A1 |
20060146379 | Katagami et al. | Jul 2006 | A1 |
20060238587 | Horsnell | Oct 2006 | A1 |
20060251796 | Fellingham | Nov 2006 | A1 |
20070062383 | Gazeau | Mar 2007 | A1 |
20070292626 | Larsson et al. | Dec 2007 | A1 |
20080271674 | Rademacher | Nov 2008 | A1 |
20080309698 | Nakano et al. | Dec 2008 | A1 |
20090027433 | Van De Wynckel et al. | Jan 2009 | A1 |
20090029069 | Edwards | Jan 2009 | A1 |
20090181182 | Sloan | Jul 2009 | A1 |
20100132612 | Achrainer | Jun 2010 | A1 |
20100156970 | Ikushima | Jun 2010 | A1 |
20100170918 | Achrainer | Jul 2010 | A1 |
20100279013 | Frankenberger et al. | Nov 2010 | A1 |
20100282283 | Bauer | Nov 2010 | A1 |
20100321448 | Buestgens et al. | Dec 2010 | A1 |
20110014371 | Herre et al. | Jan 2011 | A1 |
20110084150 | Merchant | Apr 2011 | A1 |
20110248046 | Simion | Oct 2011 | A1 |
20110262622 | Herre | Oct 2011 | A1 |
20120085842 | Ciardella | Apr 2012 | A1 |
20120105522 | Wallsten | May 2012 | A1 |
20120114849 | Melcher | May 2012 | A1 |
20120162331 | Kataoka | Jun 2012 | A1 |
20120186518 | Herre | Jul 2012 | A1 |
20120219699 | Pettersson et al. | Aug 2012 | A1 |
20120249679 | Beier et al. | Oct 2012 | A1 |
20120282405 | Herre | Nov 2012 | A1 |
20130201243 | Yoshida | Aug 2013 | A1 |
20130215203 | Chen | Aug 2013 | A1 |
20130257984 | Beier et al. | Oct 2013 | A1 |
20130284833 | Fritz et al. | Oct 2013 | A1 |
20140076985 | Pettersson et al. | Mar 2014 | A1 |
20140242285 | Pettersson et al. | Aug 2014 | A1 |
20150009254 | Kaiba et al. | Jan 2015 | A1 |
20150042716 | Beier et al. | Feb 2015 | A1 |
20150086723 | Bustgens | Mar 2015 | A1 |
20150098028 | Ohnishi | Apr 2015 | A1 |
20150328654 | Schwab | Nov 2015 | A1 |
20150375258 | Fritz et al. | Dec 2015 | A1 |
20150375507 | Ikushima | Dec 2015 | A1 |
20160052312 | Pitz et al. | Feb 2016 | A1 |
20160074822 | Han | Mar 2016 | A1 |
20160288552 | Ikushima | Oct 2016 | A1 |
20160306364 | Ikushima et al. | Oct 2016 | A1 |
20170087837 | Stefani et al. | Mar 2017 | A1 |
20170106393 | Hampson et al. | Apr 2017 | A1 |
20170136481 | Fritz et al. | May 2017 | A1 |
20170252765 | Medard | Sep 2017 | A1 |
20170267002 | Pitz et al. | Sep 2017 | A1 |
20170299088 | Rau | Oct 2017 | A1 |
20170361346 | Lahidjanian et al. | Dec 2017 | A1 |
20180022105 | Nakamura et al. | Jan 2018 | A1 |
20180056670 | Kerr | Mar 2018 | A1 |
20180093491 | Murayama et al. | Apr 2018 | A1 |
20180178505 | Stefani et al. | Jun 2018 | A1 |
20180222186 | Stefani et al. | Aug 2018 | A1 |
20180250955 | Herre | Sep 2018 | A1 |
20190091712 | Medard et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2287527 | Aug 1998 | CN |
1331661 | Jan 2002 | CN |
1512919 | Jul 2004 | CN |
1176815 | Nov 2004 | CN |
1668386 | Sep 2005 | CN |
1761530 | Apr 2006 | CN |
101264698 | Sep 2008 | CN |
101309755 | Nov 2008 | CN |
101657264 | Feb 2010 | CN |
102177002 | Sep 2011 | CN |
102198434 | Sep 2011 | CN |
102971080 | Mar 2013 | CN |
103153483 | Jun 2013 | CN |
103909743 | Jul 2014 | CN |
104613205 | May 2015 | CN |
104994966 | Oct 2015 | CN |
105358259 | Feb 2016 | CN |
1284250 | Nov 1968 | DE |
1710895 | Sep 1977 | DE |
3045401 | Jul 1982 | DE |
3221327 | Sep 1983 | DE |
3225554 | Jan 1984 | DE |
3634747 | Aug 1987 | DE |
3804092 | Sep 1988 | DE |
4115111 | Nov 1991 | DE |
4138491 | May 1993 | DE |
9405600 | Jun 1994 | DE |
68924202 | Feb 1996 | DE |
19606716 | Aug 1997 | DE |
19630290 | Jan 1998 | DE |
19731829 | Jan 1999 | DE |
19743804 | Apr 1999 | DE |
9422327 | Mar 2000 | DE |
19852079 | May 2000 | DE |
19936790 | Feb 2001 | DE |
20017629 | Mar 2001 | DE |
10048749 | Apr 2002 | DE |
69429354 | May 2002 | DE |
69622407 | Mar 2003 | DE |
10307719 | Sep 2003 | DE |
60001898 | Feb 2004 | DE |
102004021223 | Dec 2004 | DE |
10331206 | Jan 2005 | DE |
102004034270 | Feb 2006 | DE |
102004044655 | Mar 2006 | DE |
102004049471 | Apr 2006 | DE |
60212523 | Feb 2007 | DE |
69836126 | Aug 2007 | DE |
60125369 | Oct 2007 | DE |
102006021623 | Nov 2007 | DE |
102006056051 | May 2008 | DE |
102007018877 | Oct 2008 | DE |
102007037663 | Feb 2009 | DE |
10 2008 018 881 | Sep 2009 | DE |
102008053178 | May 2010 | DE |
102009029946 | Dec 2010 | DE |
102009038462 | Mar 2011 | DE |
102010004496 | Jul 2011 | DE |
102010019612 | Nov 2011 | DE |
102012006371 | Jul 2012 | DE |
102012005087 | Oct 2012 | DE |
102012005650 | Sep 2013 | DE |
102012212469 | Jan 2014 | DE |
102012109123 | Mar 2014 | DE |
202013101134 | Jun 2014 | DE |
102013002412 | Aug 2014 | DE |
102013011107 | Aug 2014 | DE |
102013205171 | Sep 2014 | DE |
102014006991 | Dec 2014 | DE |
102014007523 | Nov 2015 | DE |
102014008183 | Dec 2015 | DE |
102014012705 | Mar 2016 | DE |
102014013158 | Mar 2016 | DE |
0138322 | Apr 1985 | EP |
0297309 | Jan 1989 | EP |
0665106 | Aug 1995 | EP |
1120258 | Aug 2001 | EP |
1764226 | Mar 2007 | EP |
1852733 | Nov 2007 | EP |
1884365 | Feb 2008 | EP |
1946846 | Jul 2008 | EP |
2002898 | Dec 2008 | EP |
2133154 | Dec 2009 | EP |
2151282 | Feb 2010 | EP |
2196267 | Jun 2010 | EP |
2380744 | Oct 2011 | EP |
2433716 | Mar 2012 | EP |
2468512 | Jun 2012 | EP |
2641661 | Sep 2013 | EP |
2644392 | Oct 2013 | EP |
2777938 | Sep 2014 | EP |
2799150 | Nov 2014 | EP |
2842753 | Mar 2015 | EP |
3002128 | Apr 2016 | EP |
3156138 | Apr 2017 | EP |
3213823 | Sep 2017 | EP |
3257590 | Dec 2017 | EP |
3272669 | Jan 2018 | EP |
3068626 | Oct 2019 | EP |
3010918 | Mar 2015 | FR |
2200433 | Aug 1988 | GB |
2367771 | Apr 2002 | GB |
2507069 | Apr 2014 | GB |
1438942 | Aug 2003 | GN |
101784348 | Jul 2010 | GN |
106414081 | Feb 2017 | GN |
S5722070 | Feb 1982 | JP |
S62116442 | May 1987 | JP |
H04-106669 | Sep 1992 | JP |
H0798171 | Oct 1995 | JP |
H09192583 | Jul 1997 | JP |
2000158670 | Jun 2000 | JP |
2000317354 | Nov 2000 | JP |
2001129456 | May 2001 | JP |
2001157863 | Jun 2001 | JP |
2001239652 | Sep 2001 | JP |
2001300404 | Oct 2001 | JP |
2002361863 | Dec 2002 | JP |
2003506210 | Feb 2003 | JP |
2003136030 | May 2003 | JP |
2004142382 | May 2004 | JP |
2005526234 | Sep 2005 | JP |
2007021760 | Feb 2007 | JP |
2007152666 | Jun 2007 | JP |
2007520340 | Jul 2007 | JP |
2007245633 | Sep 2007 | JP |
2007289848 | Nov 2007 | JP |
2010531213 | Sep 2010 | JP |
2010531729 | Sep 2010 | JP |
2010241003 | Oct 2010 | JP |
2011206958 | Oct 2011 | JP |
2012506305 | Mar 2012 | JP |
2012135925 | Jul 2012 | JP |
2012206116 | Oct 2012 | JP |
2012228643 | Nov 2012 | JP |
2012228660 | Nov 2012 | JP |
2013067179 | Apr 2013 | JP |
2013530816 | Aug 2013 | JP |
2013530816 | Aug 2013 | JP |
2013188706 | Sep 2013 | JP |
2014019140 | Feb 2014 | JP |
2014050832 | Mar 2014 | JP |
2014111307 | Jun 2014 | JP |
2015-009222 | Jan 2015 | JP |
2015096322 | May 2015 | JP |
2015520011 | Jul 2015 | JP |
2015193129 | Nov 2015 | JP |
2016507372 | Mar 2016 | JP |
2016526910 | Sep 2016 | JP |
2016175077 | Oct 2016 | JP |
2016175662 | Oct 2016 | JP |
2018012065 | Jan 2018 | JP |
2020513311 | May 2020 | JP |
2020513314 | May 2020 | JP |
8601775 | Mar 1986 | WO |
9856585 | Dec 1998 | WO |
02098576 | Dec 2002 | WO |
03021519 | Mar 2003 | WO |
2003062129 | Jul 2003 | WO |
2004048112 | Jun 2004 | WO |
2004085738 | Oct 2004 | WO |
2005016556 | Feb 2005 | WO |
2005075170 | Aug 2005 | WO |
2006022217 | Mar 2006 | WO |
2007121905 | Nov 2007 | WO |
2009019036 | Feb 2009 | WO |
2010046064 | Apr 2010 | WO |
2010146473 | Dec 2010 | WO |
2011044491 | Apr 2011 | WO |
2011128439 | Oct 2011 | WO |
2011138048 | Nov 2011 | WO |
2013121565 | Aug 2013 | WO |
2015071270 | May 2015 | WO |
2015096322 | Jul 2015 | WO |
2015186014 | Dec 2015 | WO |
2016-087016 | Jun 2016 | WO |
2016142510 | Sep 2016 | WO |
2016145000 | Sep 2016 | WO |
2017006245 | Jan 2017 | WO |
2017006246 | Jan 2017 | WO |
2018102846 | Jun 2018 | WO |
Entry |
---|
European Search Report for EP20170638.9 dated Sep. 14, 2020 (4 pages—English translation not available). |
European Search Report for EP20170021.8 dated Sep. 8, 2020 (11 pages—English translation not available). |
European Search Report for EP20170025.9 dated Sep. 9, 2020 (4 pages—English translation not available). |
European Search Report for EP20170016.8 dated Sep. 7, 2020 (4 pages—English translation not available). |
China National Intellectual Property Administration Office Action and Search Report for CN Application No. 201780077018.3 dated Aug. 27, 2020 (11 pages; Search Report in English). |
Ghasem, G. et al; “Chapter 2 Background on Sprays and Their Production”, Industrial Sprays and Atomization: Design, Analysis and Applications, Jan. 1, 2002, Springer, London, pp. 7-33, XP009195118, ISBN: 978-1-4471-3816-7. |
International Search Report and Written Opinion for PCT/EP2017/081141 dated Feb. 26, 2018 (17 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081114 dated May 15, 2018 (33 pages; with English translation). |
Anonymous: “Roboterkalibrierung—Wikipedia”, Nov. 7, 2016, XP055471615, Gefunden im Internet: URL: https://de.wikipedia.org/w/index.php?title=Roboterkalibrierung&oldid=159460756 [gefunden am Apr. 30, 2018] das ganze dockument (8 pages; with English translation). |
Beyer, Lukas: “Genauigkeitssteigerung von Industrierobotern”, Forschungsberichte Aus Dem Laboratorium Fertigungstechnik/Helmut-Schmidt-Universitat, Universitat Der Bundeswehr Hamburg, Dec. 31, 2005, Seiten 1-4, XP009505118; ISSN: 1860-2886; ISBN: 978-3-8322-3681-6 (13 pages; with English machine translation). |
International Search Report and Written Opinion for PCT/EP2017/081108 dated Feb. 28, 2018 (with English translation; 18 pages). |
Intemational Search Report and Written Opinion for PCT/EP2017/081099 dated Feb. 26, 2018 (21 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081102 dated Mar. 14, 2018 (16 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081105 dated Feb. 26, 2018 (19 pages; with English translation). |
Intemational Search Report and Written Opinion for PCT/EP2017/081152 dated May 15, 2018 (25 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081098 dated May 14, 2018 (26 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081101 dated Feb. 28, 2018 (14 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081121 dated Feb. 26, 2018 (20 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081117 dated Mar. 12, 2018 (27 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081123 dated Feb. 26, 2018 (20 pages; with English translation). |
Chinese Office Action and Search Report for CN201780077603.3 dated Oct. 12, 2020 (15 pages; English translation not available). |
EPO Examination Report for Application No. 201702818.1 dated Dec. 18, 2020 (with English machine translation; 6 pages). |
Non-Final Office Action for U.S. Appl. No. 16/468,691 dated Jan. 7, 2021 (79 pages). |
EPO Official Notification of Opposition for Application No. 178218038 dated Feb. 10, 2021 (64 pages; with English machine translation). |
Non-Final Office Action dated Feb. 5, 2021 for U.S. Appl. No. 16/468,701 (80 pages). |
Non-Final Office Action dated Feb. 18, 2021 for U.S. Appl. No. 16/468,692 (97 pages). |
Chinese Office Action for Application No. CN20178007017.9 dated Aug. 31, 2020 (8 pages; with English translation). |
Non Final Office Action for U.S. Appl. No. 16/468,700 dated Dec. 1, 2020 (73 pages). |
Non Final Office Action for U.S. Appl. No. 16/468,696 dated Nov. 2, 2020 (58 pages). |
Non Final Office Action for U.S. Appl. No. 16/468,689 dated Oct. 15, 2020 (77 pages). |
Chinese Office Action for CN201780077476.7 dated Sep. 23, 2020 (12 pages; English translation not available). |
JPO Submission for JP2019-531096; submitted Dec. 21, 2020 (32 pages; with English translation). |
JPO Submission for JP2019-531957; submitted Dec. 21, 2020 (21 pages; with English translation). |
Fianl Office Action dated May 13, 2021 for U.S. Appl. No. 16/468,691 (70 pages). |
Final Office Action dated Mar. 19, 2021 for U.S. Appl. No. 16/468,696 (45 pages). |
Non-Final Office Action dated Apr. 28, 2021 for U.S. Appl. No. 16/468,693 (109 pages). |
Final Office Action dated Apr. 19, 2021 for U.S. Appl. No. 16/468,700 (62 pages). |
Notice of Allowance mailed in U.S. Appl. No. 16/468,689 dated Jun. 2, 2021 (38 pages). |
Final Office Action dated Jun. 11, 2021 for U.S. Appl. No. 16/468,701 (53 pages). |
JPO Notification of Reasons for Rejection for Application No. JP2019-532030 dated May 18, 2021 (6 pages; with English translation). |
CIPO Office Action for Application No. CN201780077474.8 dated Apr. 26, 2021 (17 pages; with English translation). |
Chinese Office Action dated Jun. 2, 2021 for Application No. CN201780077017.9 (17 pages; with English machine translation). |
Japanese Notification of Reasons for Rejection dated Jun. 1, 2021 for Application No. JP2019-531944 (14 pages; with English machine translation). |
Japanese Notification of Reasons for Rejection dated Jun. 8, 2021 for Application No. JP2019-531957 (13 pages; with English machine translation). |
Supplemental Notice of Allowability dated Jul. 8, 2021 for U.S. Appl. No. 16/468,696 (11 pages). |
Liptak, Bela. (2006). Instrument Engineers' Handbook (4th Edition)—Process Control and Optimization, vol. 2-2.1.3.5 Process Time Constant, (pp. 99-102). Taylor & Francis. Retrieved from https://app.knovel.eom/hotlink/pdf/id:kt00CC7HL1/instrument-engineers/process-time-constant (Year: 2006). |
Japenese Patent Office Notice of Reasons of Refusal for Application No. JP 2019-531967 dated Jun. 8, 2021 (8 pages; with English machine translation). |
Notification of Reasons for Refusal for Application No. JP2019-532012 dated Jun. 22, 2021 (6 pages; with English machine translation). |
Notification of Reasons for Refusal for Application No. JP2019-527330 dated Jun. 22, 2021 (10 pages; with English machine translation). |
JPO Office Action for Application No. JP2019-531097 dated Jun. 29, 2021 (10 pages; with English machine translation). |
JPO Office Action for Application No. 2019-531096 dated Jul. 6, 2021 (9 pages; with English machine translation). |
JPO Office Action for Application No. 2019-531098 dated Jul. 6, 2021 (5 pages; English translation only). |
JPO Office Action for Application No. 2019-531459 dated Jul. 6, 2021 (8 pages; with English machine translation). |
JPO Office Action dated Jul. 3, 2021 for Application No. JP2019-532024 (12 pages; with English machine translation). |
Non-Final Office Action dated Aug. 27, 2021 for U.S. Appl. No. 16/468,695 (149 pages). |
Number | Date | Country | |
---|---|---|---|
20190337005 A1 | Nov 2019 | US |