Printing devices like ink-jet printers may have to be cleaned regularly to maintain image quality and e.g. prevent partial or complete clogging of print head nozzles. To this end, printing devices can comprise a maintenance subsystem to perform cleaning operations on a print head of the printing device.
In the following, a detailed description of various examples is given with reference to the figures. The figures show schematic illustrations of
To clean a print head, a printing device can comprise a maintenance cartridge with a number of subsystems for performing cleaning operations. The maintenance cartridge can for example comprise a wiping subsystem with a wiping material, which can be brought in contact with the print head to wipe off contaminants from the print head. To ensure an effective cleaning, a tension may be created in the wiping material, e.g. by generating a driving force in the wiping material and countering the driving force with a brake force. The brake force may vary over time, which can cause problems as the tension in the wiping material may increase or decrease.
The wiping subsystem 100 further comprises a brake 106 to generate a first brake force F1 applied to the wiping material 102. The first brake force F1 may for example be applied along a longitudinal direction of the wiping material 102, wherein the longitudinal direction is the direction of the wiping material 102 along which the wiping material 102 is rolled-up on the clean material roll 104. The first brake force F1 may either be a static force like friction that opposes any dynamic force applied to accelerate the wiping material 102 or may be a dynamic force that can accelerate the wiping material 102. In one example, the brake 106 comprises a brake shoe, which is pressed against the wiping material 102 with a force f1 to generate the first brake force F1. The brake shoe may for example be pressed against the portion 102A-1 of the wiping material 102 that is rolled up on the clean material roll 104. In another example, the brake 106 may be part of or coupled to the clean material roll 104. The brake 106 may for example create friction that has to be overcome in order to rotate the clean material roll 104, e.g. by pressing a brake shoe against the clean material roll. Alternatively, the brake 106 may generate a torque on the clean material roll 104, e.g. using the actuator. The torque may for example be generated to resist rotation of the clean material roll 104.
The wiping subsystem 100 also comprises a friction element 108 to generate a second brake force F2 along the wiping material 102. The friction element 108 may be similar to the brake 106. The friction element 108 may e.g. be pressed against the wiping material 102 with a force f2 to generate the second brake force F2. In other examples, the friction element 108 may be a static element at a fixed position that is in contact with the wiping material 102 as detailed below with reference to
The first and second brake forces add up, yielding a total brake force FB=F1+F2 along the wiping material 102. The total brake force FB is the force that has to be overcome to move the wiping material 102. The total brake force FB may for example counteract a driving force FD, which may e.g. be applied to the wiping material 102 to generate a tension in the wiping material 102 or to unroll the wiping material 102 from the clean material roll 104. If the driving force FD is smaller than the total brake force FB, the total brake force FB prevents the wiping material 102 from moving.
The friction element 108 compensates at least in part a change in the first brake force F1 to control the total brake force FB. The friction element 108 may for example compensate at least in part a decrease in the first brake force F1 by an increase in the second brake force F2 or an increase in the first brake force F1 by a decrease in the second brake force F2. The friction element 108 can compensate a change in the first brake force F1 to maintain the total brake force FB to be constant or about constant. In one example, the friction element 108 keeps the total brake force FB in a target range, e.g. a range between 80% and 120% of a target value.
The friction element 108 may e.g. be connected to a controller (not shown in
The wiping subsystem 200 further comprises a brake 106 to generate a first brake force F1 along a longitudinal direction of the wiping material 102 in a first portion 102A-2 of the clean part 102A of the wiping material 102. The brake 106 comprises a spring 204 to press a brake shoe 202 with a force f1 against the clean part 102A of the wiping material 102, e.g. the portion 102A-1 of the clean part 102A that is rolled up on the clean material roll 104. One end of the spring 204 may be attached to a frame of the wiping subsystem 200 or of a maintenance cartridge comprising the wiping subsystem 200. The brake shoe 204 may for example consist of or comprise plastic, rubber or metal.
The wiping subsystem 200 further comprises a friction element 108 to generate a second brake force F2 along the wiping material 102. The friction element 108 is to convert the first brake force F1 in the first portion 102A-2 to a friction force along the longitudinal direction of the wiping material 102 in a second portion 102A-3 of the clean part 102A of the wiping material 102 to generate the second brake force F2. In this example, the friction force corresponds to the total brake force FB. The friction force is to be understood as a force that arises at least in part from friction between the wiping material 102 and the friction element 108. Converting the first brake force F1 to the friction force refers to modifying the force acting along the longitudinal direction of wiping material 102 such that the friction force acts in the second portion 102A-3 instead of the first brake force F1 if the first brake force F1 is applied in the first portion 102A-2. This may comprise changing a direction and/or magnitude of the first brake force F1. The first portion 102A-2 may lie between the friction element 108 and the portion 102A-1 of the clean part 102A that is rolled up on the clean material along 104. The second portion 102A-3 may lie between the friction element 108 and a cleaning part 102B (not shown in
The friction element 108 is in contact with the wiping material 102, e.g. with a portion of the wiping material 102 connecting the first 102A-2 and second portions 102A-3. The friction element may divert the wiping material 102 by a deflection angle, i.e. may change a longitudinal direction into which the wiping material 102 extends in the second portion 102A-3 as compared to the first portion 102A-2. Contact between the friction element 108 and the wiping material 102 can generate the friction force, wherein the second brake force F2 may correspond to the friction caused by the friction element 108 that adds to the first brake force F1. The second brake force F2 may e.g. depend on the direction and magnitude of the first brake force F1, the size of a contact area between the wiping material 102 and the friction element 108, the deflection angle, the wiping material 102 and/or a surface material of the friction element 108.
In the example shown in
F2=F1(eμβ−1)
wherein μ is a static friction coefficient, which can e.g. depend on the wiping material 102, the surface material of the rod 108 and a structure of the respective surfaces. According to the Capstan equation, the second brake force F2 increases exponentially with the contact angle β such that a small change in the contact angle β can lead to a drastic change in the second brake force F2. If the friction element 108 has a different shape, the relation between the first F1 and second brake forces F2 may differ from the Capstan equation. In general, however, the second brake force F2 will also strongly depend on the contact angle β.
The second brake force F2 may be controlled by changing the contact angle β, e.g. to compensate at least in part a change in the first brake force F1. This is illustrated in
An example for the evolution 300 of the spring force f1, the first brake force F1 and the total brake force FB=F1+F2 as a function of the outer radius R of the wiping material 102A-1 rolled up on the clean material roll 104 is illustrated in
A sectional view of the wiping subsystem 402 of the maintenance cartridge 400 is shown in
The wiping subsystem 402 comprises a brake 106 to generate a first brake force F1 along a longitudinal direction of the wiping material 102 in a first portion 102A-2 of the clean part 102A of the wiping material 102. The brake 106 may e.g. have a spring 204 to press a brake shoe 202 against a portion 102A-1 of the wiping material 102 rolled up on the clean material roll 104. The wiping subsystem 402 further comprises a friction element 108 to convert the first brake force F1 to a friction force along the longitudinal direction of the wiping material 102 in a second portion 102A-3 of the clean part 102A of the wiping material 102 to generate the second brake force F2. In this example, the friction force corresponds to a total brake force FB that is the sum of the first and second brake forces F1 and F2. The friction element 108 may for example be a rod, wherein the wiping material 102 is wrapped around the rod 108 spanning a contact angle β. As discussed above, the total brake force FB may then be related to the first brake force F1 through the Capstan equation FB=eμβ. Accordingly, the friction element 108 amplifies the first brake force F1 by an amplification factor eμβ. By adjusting the amplification factor, the friction element 108 can compensate at least in part a change in the first break force F1 to control or maintain the total brake force FB. The amplification factor may for example be adjusted by changing the contact angle β, e.g. as described above with reference to
The total brake force FB in the second portion 102A-3 generates a tension force FT in the cleaning part 102B, wherein the tension force FT also acts along the longitudinal direction of the wiping material 102. The tension force FT may be equal to the total brake force FB, e.g. if no additional elements are in contact with the wiping material 102 between the second portion 102A-3 and the cleaning part 102B. In other examples, the tension force FT may be different from the total brake force FB, e.g. if the wiping material 102 passes by an additional steering element like a deflection rod 414 between the second portion 102A-3 and the cleaning part 102B as shown in
The tension force FT can counteract a driving force FD in the cleaning part 102B, wherein the driving force FD may e.g. be applied such that the driving force FD points from the clean part 102A towards the used part 102C along the longitudinal direction of the wiping material 102. To generate the driving force FD, the wiping subsystem 402 or the maintenance cartridge 400 may comprise an actuator. The actuator may e.g. be coupled to the used material roll 412 to rotate the used material roll 412, thereby creating a force fD towards the used material roll 412 in the used part 102C. The force fD in the used part 102C translates into the driving force FD in the cleaning part 102B, e.g. as described above with respect to the tension force FT. In other examples, the actuator may be coupled to a steering element like a deflection rod, e.g. to rotate or move the steering element to generate the driving force FD. In yet another example, a force may be applied to the steering element, e.g. via a spring, to generate the driving force FD in the wiping material 102.
When the driving force FD is applied, the brake 106 generates the tension force FT acting along the wiping material 102 in a direction opposite to the driving force FD. As long as the driving force FD is smaller than or equal to the maximum tension force FT, the tension force FT prevents the wiping material 102 from moving. The two opposing forces FT and FD thus create a tension in the cleaning part 102B. The wiper force FW can depend on the tension in the cleaning part 102B, e.g. due to a compression of the wipers 404 as a result of the tension, which may change the wiper force FW as detailed below with reference to
The printing device 600 also comprises a maintenance cartridge, e.g. the maintenance cartridge 400 with the wiping subsystem 402 described above. The maintenance cartridge 400 may e.g. be arranged in a maintenance area adjacent to one end of the print head path 604. In some examples, the maintenance cartridge 400 may be movable along a maintenance path 606 as illustrated by the arrow labeled “X”, e.g. to position the maintenance cartridge 400 relative to the print head 602 to perform a cleaning operation with one of the subsystems 402, 406, and 410. The maintenance path 606 may e.g. be aligned with the media advance direction to traverse the print head path 604. To move the maintenance cartridge 400, the printing device 600 may further comprise an actuator, e.g. an electric motor coupled to the maintenance cartridge 400 via a drive belt or a gear drive such as a worm drive.
To wipe the print head 602, the print head 602 and the maintenance cartridge 400 may be brought into a wiping configuration, in which the print head 602 is adjacent to the maintenance cartridge 400. For this, the print head 602 may for example be moved to a cleaning position in the maintenance area, e.g. such that the print head 602 is located above the maintenance cartridge 400 in the direction of view of
The wiper force FW may e.g. depend on the tension in the cleaning part 102B of the wiping material 102 and a distance between the wiping subsystem 402 and the print head 602. When the wiping material 102 is not in contact with the print head 602, the spring force that is generated by the wipers 404 and presses the wiping material 102 upwards may be countered by the tension in the cleaning part 102B, creating a stable equilibrium. When the wiping material 102 comes in contact with the print head 602, the print head 602 may further compress the wipers 404 such that the wipers 404 generate the wiper force FW in addition to the equilibrium spring force. Accordingly, the wiper force FW presses the wiping material 102 against the print head 602. If the tension force FT is too small, the print head 602 may deform or move the wiping material 102 on the wipers 404. This may result in an insufficient cleaning of the print head 602 by the wiping material 102. If the tension force FT is too large, the tension in the cleaning part 102B may lead to a compression of the wipers 404. This can result in a reduced wiper force FW or may even prevent contact between the wiping material 102 and the print head 602. This may also affect the quality of the cleaning.
As described above, the tension force FT results from the first break force F1 generated by the brake 106, which is amplified by the friction element 108 yielding the total break force FB. The friction element 108 is to adjust the amplification factor to compensate at least in part a change in the tension force FT to control the wiper force FW. A change in the tension force FT may for example arise from a change in the first break force F1, e.g. due to a change of the amount of wiping material 102A-1 rolled up on the clean material roll 104. To compensate this change at least in part, the friction element 108 and the clean material roll 104 may be positioned such that the contact angle β increases as the amount of wiping material 102A-1 rolled up on the clean material roll 104 decreases. An increase in the contact angle β can enhance the amplification factor, which may compensate the decrease in the first break force F1 at least in part, e.g. to maintain a constant or approximately constant wiper force FW. In one example, the wiper force FW changes by less than 20%, preferably less than 10% as the wiping material 102 is completely unrolled from the clean material roll 104.
The method 700 comprises, in 702, applying a driving force FD along a longitudinal direction of the wiping material 102 in a cleaning part 102B of the wiping material 102. As detailed above, the driving force FD may for example be generated by an actuator, e.g. an electric motor. The actuator may e.g. be part of or coupled to the used material roll 412 to rotate the used material roll 412 and thereby generate a force along the wiping material 102. In other examples, the actuator may be coupled to a steering element like a deflection rod, e.g. to rotate or move the steering element to generate the driving force FD. In yet another example, a force may be applied to the steering element, e.g. via a spring, to generate the driving force FD in the wiping material 102.
The method 700 further comprises, in 704, applying a brake force F1 along the longitudinal direction of the wiping material 102 in a brake portion 102A-2 of the wiping material 102 to counteract the driving force FD. The brake force F1 may for example be generated by the brake 106, e.g. by pressing the brake shoe 202 with a force f1 against a portion of the clean part 102A of the wiping material 102. The brake shoe 202 may e.g. be pressed against the portion 102A-1 of the wiping material 102 rolled up on the material roll 104 or against a portion of the clean part 102A that is unrolled from the material roll 104, e.g. a portion of the brake portion 102A-2. In other examples, the brake force F1 may be generated via the material roll 104, e.g. due to friction impeding a rotation of the material roll 104 or by applying a torque to the material roll 104.
In 706, the brake force F1 is converted to a tension force FT in the cleaning part 102B that counters the driving force FD, i.e. the tension force FT is equal and opposite to the driving force FD. For example, if the driving force FD acts away from the material roll 104, the tension force FT points towards the material roll 104. The counteracting forces create a tension in the cleaning part 102B. Converting the brake force F1 to the tension force FT refers to modifying the force acting along the longitudinal direction of wiping material 102 such that, if the brake force F1 is applied in the brake portion 102A-2, the tension force FT acts in the cleaning part 102B instead of the brake force F1. This may comprise changing a direction and/or magnitude of the first brake force F1. Converting the brake force F1 to the tension force FT may for example comprise generating a second break force F2 along the wiping material 102 e.g. via the friction element 108 as described below in more detail. Additionally, converting the brake force F1 to the tension force FT may comprise converting the total break force FB corresponding to the sum of the first F1 and second break forces F2 to the tension force FT, e.g. via additional steering elements like the deflection rod 414.
The method 700 further comprises, in 708, unrolling a part of the wiping material 102A-1 from the material roll 104. This may for example comprise increasing the driving force FD pointing away from the material roll 104 along the longitudinal direction of the wiping material 102 such that the driving force FD exceeds the maximum tension force FT. The driving force FD may be generated as described above. When unrolling a part of the wiping material 102A-1 from the material roll 104, the outer radius R of the wiping material 102A-1 rolled up on the material roll 104 may decrease. As a result of this, the brake force F1 may change, e.g. due to a change of the force f1 pressing the brake shoe 202 against the wiping material 102A-1 on the material roll 104. The force f1 may for example be given by the product of a spring constant of the spring 204 and a length by which the spring 204 is compressed compared to its equilibrium length. As the spring 204 relaxes, the force f1 may decrease as the spring 204 approaches its equilibrium length.
The method 700 further comprises, in 710, compensating at least in part a change in the brake force F1 to maintain the tension force FT in the cleaning part 102B to be constant or about constant. In one example, the tension force FT in the cleaning part 102B may change by less than 20%, preferably less than 10% as the wiping material 102 is completely unrolled from the material roll 104. Compensating at least in part the change in the brake force F1 may comprise adjusting
The method 700 may comprise wrapping a portion of the wiping material 102 between the brake portion 102A-2 and the cleaning part 102B around the friction element 108 along a contact angle β. The contact angle β is the angle enclosed by the first and last points of contact between the friction element 108 and the wiping the conversion of the brake force F1 to the tension force FT such that the tension force FT remains constant or approximately constant, e.g. by adjusting the second break force F2.
The flow diagram shown in
In one example, the method 700 can further comprise providing a friction element 108. The friction element 108 may for example be used to generate the second break force F2 to convert the break force F1 to the tension force FT, e.g. by pressing an element against the wiping material 102 as in the wiping subsystem 100 or using a deflecting element like a rod in contact with the wiping material 102 as described above with reference to
material 102 with respect to the center of the friction element 108. In one example, the friction element 108 may be a cylindrical rod as in
Compensating at least in part the change in the brake force F1 may comprise changing the contact angle β. As described above with reference to
The friction element 108 may be provided at a fixed position and changing the contact angle β may comprise changing at the friction element 108 an input angle of the wiping material 102 coming from the material roll 104. The input angle may be defined as the angle between the orientation of the wiping material 102 upstream of the friction element 108, i.e. on the side of the material roll 104, and a fixed direction within the wiping subsystem 402, e.g. the orientation of the wiping material 102 downstream of the friction element 108, i.e. on the side opposite to the material roll 104. In the example shown in
In one example, the contact angle β is increased as the amount of wiping material 102A-1 rolled up on the material roll 104 decreases, e.g. to compensate a decreasing brake force FB at least in part by a larger friction between the friction element 108 and the wiping material 102. In
This description is not intended to be exhaustive or limiting to any of the examples described above. The print head maintenance cartridge, printing device and method disclosed herein can be implemented in various ways and with many modifications without altering the underlying basic properties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/066871 | 12/20/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/131074 | 6/25/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2164363 | Waters | Jul 1939 | A |
6692100 | Steinfeil et al. | Feb 2004 | B2 |
8777372 | Inoue | Jul 2014 | B2 |
9308730 | Maida et al. | Apr 2016 | B2 |
9498959 | Shinoto et al. | Nov 2016 | B2 |
10449767 | Fujioka | Oct 2019 | B2 |
20160090243 | Aliesch | Mar 2016 | A1 |
20180001645 | Fujioka et al. | Jan 2018 | A1 |
20180264822 | Tanioku et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
3254855 | Dec 2017 | EP |
Number | Date | Country | |
---|---|---|---|
20220040984 A1 | Feb 2022 | US |