This invention relates generally to the field of ink jet printing systems. More particularly, the invention relates to maintaining a print engine within an ink jet printing system.
An ink jet printer is an example of a printing apparatus that ejects droplets of ink onto a recording medium, such as a sheet of paper, for printing an image on the recording medium. The ink jet printer includes a print engine having one or more ink jet print heads provided with an ink cartridge that accommodates the ink. In operation of the print engine, the ink is supplied from the ink cartridge to each ink jet print head having ejection nozzles, so that a printing operation is performed by ejection of the ink droplets from selected ejection nozzles.
However, ink jet printers may suffer from one or more problems leading to nozzle clogging and the inability to fire an ink droplet under normal conditions. A clogged nozzle may not only result in diminished print quality, but may also require the expense of replacing the entire ink jet print head. Thus, ink jet print heads are regularly maintained to ensure usability.
Maintenance of ink jet print heads typically involves a maintenance station that generates a vacuum that is used to pull ink through the print head to the maintenance station. Further, an ambient air system is implemented to relieve the vacuum prior to disengaging the print head from the maintenance station. Maintenance stations often include a manifold assembly of one or more manifolds coupled together via fittings and hoses.
Additionally, numerous hoses are coupled to the manifolds, each with at least one fitting. The manifold hose fittings are potential vacuum leak points that reduce effectiveness of the vacuum at the print head. Having a relatively large number of fittings increases the number of possible vacuum leak points also makes maintenance manifold assemblies, and therefore maintenance stations, more difficult to service and/or replace.
Finally, a maintenance station utilizing relatively large diameter hoses coupled to the print head nozzle plates results in a low velocity flow of ink through the hoses from the print head. The low velocity flow of ink through the maintenance manifold assembly hoses is more likely to allow obstructions to remain inside the hoses, reducing vacuum effectiveness.
Therefore, a maintenance manifold assembly with a reduced number of fittings and smaller diameter hoses that reduces possible vacuum leak points, prevents clogs, lowers response time, and enables more efficient servicing and replacement is desired.
In one embodiment, a print head maintenance manifold assembly is disclosed. The maintenance manifold assembly includes a multitude of hoses and a manifold coupled to the hoses. The manifold includes a first set of fittings and smaller diameter hoses coupled to print heads at a first section of the manifold and a second set of fittings and larger hoses coupled to a vacuum source at a second section of the manifold.
In a further embodiment, a manifold includes a first port, a first row of print head fittings coupled to a first end of the first port and a first vacuum fitting coupled to a second end of the first port.
A better understanding of the present invention can be obtained from the following detailed description in conjunction with the following drawings, in which:
A print head maintenance station is described. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying principles of the present invention.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
As shown in
Also the maintenance manifold assembly shown in
According to one embodiment, a compact maintenance manifold assembly is provided.
In one embodiment, hoses 305 are small diameter hoses that increase the ink velocity from print head 100 to manifold assembly 300. Increasing ink velocity enhances the ability to remove obstructions thereby prevents clogging. Further, the implementation of smaller diameter hoses reduces a vacuum response time of the system.
With larger hose diameters, a vacuum is generated over a period of time as a result of a vacuum pump capacity and a volume of air that must be removed from the system to generate sufficient vacuum at the print head to facilitate an effective print head cleaning process. Accordingly, the use of small diameter hoses allows air to be removed very rapidly from maintenance manifold assembly 300, resulting in a vacuum impulse. The vacuum impulse increases print head cleaning effectiveness. In other embodiments, the vacuum impulse effect can be created using vacuum chambers or higher capacity vacuum pumps.
Maintenance manifold assembly 300 also includes fittings 313 coupled at an end of manifold 310.
Further, it is shown in
As discussed above, a vacuum is provided at each port 320 via a respective fitting 313. Thus, the vacuum presented at port 320 enables ink to be pulled into manifold 310 from a print head via hoses 305 and fittings 311, and out through fittings 313. In other embodiments, separate ambient air ports may be provided to relieve the vacuum in order to prevent damage to the print head prior to removing a print head from the maintenance station.
The fitting interference surface is then used in combination with a threaded fitting to generate a deformation in the fitting, which creates a sealing surface without the use of an o-ring, sealing washer, thread tape or thread sealing tape. Thus, the crush seal fitting configuration employs a threaded fitting that deforms at the sealing surface to create a seal.
According to one embodiment, the components of maintenance manifold assembly 300 are composed of polyoxymethylene, polypropylene, and brass. However in other embodiments, other materials are used for one or more of the components of maintenance station 300.
The above-described maintenance manifold assembly provides a compact design that replaces complex maintenance manifold assemblies requiring multiple manifolds and hundreds of fittings in order to maintain a set of print heads. Particularly, the present design eliminates in excess of five hundred fittings required in conventional systems. Thus, simple diagnosis of problems at, and less invasive replacement of, a maintenance manifold assembly is achieved.
Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention may be practiced without some of these specific details. Accordingly, the scope and spirit of the invention should be judged in terms of the claims, which follow.
The present patent application is a Divisional application claiming priority to application Ser. No. 12/973,309, filed Dec. 20, 2010, which is pending.
Number | Date | Country | |
---|---|---|---|
Parent | 12973309 | Dec 2010 | US |
Child | 14531216 | US |