The ejecting portion of the print head includes a silicon substrate 1 and a liquid chamber 2 formed on the silicon substrate 1. An ink droplet 8 is ejected from a nozzle 3. The cantilever 4 as a thermomechanical actuator supported by the silicon substrate 1 is extended in the liquid chamber 2. The cantilever 4 includes: a heat generation layer 20, which is divided into two heat generating portions by a slit, as a first layer; a conductor layer forming wiring portions 5 for supplying power to the two heat generating portions and a turning electrode 11 for connecting the two heat generating portions to each other; and dielectric layers 23 and 24 as a second layer.
The cantilever 4 as the thermomechanical actuator in the present invention includes the first layer constituted by the heat generation layer 20, and the second layer constituted by the first dielectric layer 23 and second dielectric layer 24 as shown in
A material of the first dielectric layer 23, which constitutes the second layer, of the fixed end 9 side is selected so as to have a linear expansion coefficient sufficiently smaller than that of the heat generation layer 20 constituting the first layer, and thus the fixed end 9 side of the cantilever 4 as the thermomechanical actuator is bent at a sufficiently large curvature. In order that a curvature of the free end 10 side of the cantilever 4 is lowered, a material of the second dielectric layer 24, which constitutes the second layer, of the free end 10 side is selected so as to have a linear expansion coefficient not much smaller than that of the heat generation layer 20 of the first layer. That is, in the embodiment, the linear expansion coefficient of the material selected for the first dielectric layer 23 is different from that of the material selected for the second dielectric layer 24. Thus, as shown in
Further, it is preferable that the linear expansion coefficient of the second dielectric layer 24 of the second layer of the free end 10 side is larger than that of the heat generation layer of the first layer. Alternatively, a metal layer 27 having a linear expansion coefficient larger than that of the heat generation layer 20 may be laminated on a thin insulation layer laminated on the upper surface of the heat generation layer 20, in place of the second dielectric layer 24 of the free end 10 side. Thus, as shown in
As shown in
In the embodiment, as the second layer constituting the cantilever 4, a layer is cited that the two dielectric layers 23 and 24 having the linear expansion coefficients different from each other are formed as a continuous one layer on the upper surface of the heat generation layer 20 from the fixed end 9 to the free end 10. However, the second layer is not limited to the above continuous layer. For example, the second layer of the cantilever 4 may be formed by properly selecting three or more dielectric layers having the linear expansion coefficients different from each other. Additionally, each dielectric layer is not always required to be continuously formed on the upper surface of the heat generation layer 20 as the first layer from the fixed end 9 to the free end 10. Alternatively, the two dielectric layers 23 and 24 having the linear expansion coefficients different from each other may be formed on a lower surface of the heat generation layer 20 from the fixed end 9 to the free end 10. In this case, the material of the first dielectric layer 23 of the fixed end 9 side is selected so as to have the linear expansion coefficient much larger than that of the heat generation layer 20, and the material of the second dielectric layer 24 of the free end 10 side is selected so as to have the linear expansion coefficient not much larger than or smaller than that of the heat generation layer 20.
In a cantilever 4 as the thermomechanical actuator in the embodiment, a second heat generation layer 22 is further laminated on the cantilever 4 of the first embodiment. That is, in the cantilever 4 of the embodiment, the second heat generation layer 22 as a third layer is further laminated on an upper surface of the second layer, which includes the first dielectric layer 23 and second dielectric layer 24, of the first embodiment. In the embodiment, the metal layer 27 may be laminated in place of the second dielectric layer 24 like the first embodiment. In this case, thin insulation layers are laminated between the metal layer 27 and the first heat generation layer 20 and between the metal layer 27 and the second heat generation layer 22, respectively.
According to such a constitution, first, the second heat generation layer 22 is energized to generate heat in the cantilever 4 of the embodiment. The linear expansion coefficient of the first dielectric layer 23 is smaller than that of the second heat generation layer 22, and thus the fixed end 9 side of the cantilever 4 is bent to the side opposite from the nozzle 3 as shown in
A cantilever 4 as the thermomechanical actuator in the embodiment is a modification of the cantilever 4 of the first embodiment. That is, in the cantilever 4 of the embodiment, a second dielectric layer 26 is partially laminated on the upper surface (direction of ejecting droplets) of the heat generation layer 20 at the fixed end 9 side, and a first dielectric layer 25 is partially laminated on the lower surface of the heat generation layer 20 at the free end 10 side. In the embodiment, the first dielectric layer 25 and second dielectric layer 26, which constitute a second layer, are laminated so as to sandwich the heat generation layer 20 constituting a first layer therebetween. The cantilever 4 having such a constitution is formed in a manner that first, the first dielectric layer 25 is partially formed on the substrate 1, the heat generation layer 20 is laminated thereon, and lastly the second dielectric layer 26 is partially laminated on the heat generation layer 20. Each of the materials of the first dielectric layer 25 and second dielectric layer 26 is selected so as to have a linear expansion coefficient smaller than that of the heat generation layer 20. Moreover, the materials of the first dielectric layer 25 and second dielectric layer 26 may be the same.
In the cantilever 4 of the embodiment thus constituted, the fixed end 9 side of the cantilever 4 is bent upward and the free end 10 side thereof is bent downward when the heat generation layer 20 is energized to generate heat, and thus effects similar to those of the first embodiment and second embodiment can be obtained. Accordingly, if the linear expansion coefficients of the first dielectric layer 25 and second dielectric layer 26 and occupation ranges of them to be laminated are properly selected, the free end 10 side of the cantilever 4 can be made approximately parallel with the inner wall (a roof portion) of the liquid chamber when the cantilever 4 is bent to the maximum.
A cantilever 4 as the thermomechanical actuator in the embodiment is formed in a manner that the second heat generation layer 22 as a third layer is further laminated on an upper surface (direction of ejecting droplets) of the cantilever of the third embodiment. According to such a constitution, when the second heat generation layer 22 is energized to generate heat, the cantilever 4 is bent to the side opposite from the nozzle 3 as shown in
A cantilever 4 as the thermomechanical actuator in the embodiment is a modification of the cantilever 4 of the first embodiment. That is, the cantilever 4 of the embodiment is formed in a manner that the first dielectric layer 23 as the second layer is laminated on the upper surface of the heat generation layer 20 as the first layer, and the second dielectric layer 24 is partially laminated on the fixed end 9 side of on an upper surface (direction of ejecting droplets) of the dielectric layer 23. A material of the first dielectric layer 23 is selected so as to have a linear expansion coefficient not much smaller than that of the heat generation layer 20, and a material of the second dielectric layer 24 is selected so as to have the same linear expansion coefficient as the first dielectric layer 23 or smaller than that of the first dielectric layer 23. Additionally, film thicknesses of the first dielectric layer 23 and second dielectric layer 24 may be different from each other.
In the cantilever 4 of the embodiment thus constituted, the fixed end 9 side of the cantilever 4 has a film thickness for two layers, and a temperature distribution is formed in the dielectric layer in a film thickness direction by selecting a material having a relatively low thermal conductivity for the dielectric layer. Accordingly, the fixed end 9 side of the cantilever 4 of the embodiment is bent at a larger curvature, and a large driving force is obtained for ejecting droplets. Additionally, the free end 10 side of the cantilever 4 is constituted by only the first dielectric layer 23, and thus a curvature thereof is smaller than that of the fixed end 9 side, and an effect similar to that of the first embodiment can be obtained. That is, when the cantilever 4 is bent to the maximum, the free end 10 side of the cantilever 4 extends approximately straight, and can be made approximately parallel with the inner wall (a roof portion) of the liquid chamber 2 compared with the conventional cantilever. Further, as described regarding the first embodiment, the second layer of the free end 10 side of the cantilever 4 may be replaced with a metal layer.
The cantilever 4 as the thermomechanical actuator in the embodiment is formed by further laminating the second heat generation layer 22 on an upper surface (direction of ejecting droplets) of the cantilever of the fifth embodiment. In the cantilever 4 thus constituted, when the second heat generation layer 22 is energized to generate heat, the cantilever 4 is bent to the side opposite from the nozzle 3. Next, after cooling the second heat generation layer 22, when the first heat generation layer 20 is energized to generate heat, the cantilever 4 is bent toward the nozzle 3. Accordingly, the cantilever 4 of the embodiment can obtain a larger ejection pressure for ejecting droplets.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2006-171691, filed Jun. 21, 2006, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2006-171691 | Jun 2006 | JP | national |